
 1

FEDERAL VOTING ASSISTANCE PROGRAM VOTING PENETRATION TEST
 CONTRACT NUMBER: HHS CASU WII-0037-CALIBRE

August 15, 2011

 Submitted to: Submitted by:

 CALIBRE Systems RedPhone, LLC

Lampelk
Typewritten Text
Appendix B

Lampelk
Sticky Note
Accepted set by Lampelk

 2

POINT OF CONTACT: L. Jay Aceto, CISSP, ISSAP/MP, CISM, NSA-IAM/IEM

Telephone: 571-334-9225 • E-mail Address: jay.aceto@redphonecorporation.com

 3

Table of Contents

Executive Summary .. 4

Global Objectives .. 5

Penetration Testing Architecture ... 6

Findings ... 7

Finding No. 1: SSH

Severity: High ... 7

Finding No. 2: SQL Injection

Severity: Moderate ... 9

Finding No.3: Cross-site scripting (reflected)

Severity: Moderate .. 10

Finding No.4: SSL cookie

Severity: Low ... 11

Finding No. 5: SSL certificates

Severity: Low ... 12

Finding No. 6: Cookie without HttpOnly flag set

Severity: Low ... 12

Finding No. 7: Referer-dependent response

Severity: Informational ... 13

Finding No. 8: Open redirection

Severity: Informational ... 14

Finding No. 9: Cross-domain script include

Severity: Informational .. 15

Finding No.10: Email addresses disclosed

 Severity: Informational .. 15

Finding No.10: Email addresses disclosed

 Severity: Informational .. 15

Finding No.10: Email addresses disclosed

 Severity: Informational .. 15

Finding No. 11: Robots.txt file

Severity: Low/Informational .. 16

Finding No. 12: Cacheable HTTPS response

 4

Severity: Informational ... 17

Finding No. 13: Script files

Severity: Moderate .. 17

Summary & Conclusions: .. 19

Document Properties

Title: Multi-Vendor Mock Voting Exercise – Operation Orange Black Box Penetration

Testing Report

Version V1.0

Author L. Jay Aceto CISSP, CISM, ISSAP/MP, NSA-IAM/IEM

Technical Review: TC McFall

Peer Review: Josha Richards, Aaron Bossert, Michael Carter

RedPhone Penetration testers: TC McFall, L. Jay Aceto

Version control

Version : 1.0

Date : August 15, 2011

 5

Executive Summary

The democratic process rests on a fair, universally accessible, anonymous voting

system through which all citizens can easily and accurately cast their vote. At

present, over 6,000,000 voters reside outside the United States and rely on

traditional paper-based registration and voting processes that are inadequate at

meeting their needs, and fraught with inherent delays. The main issues revolve

around the inherent latency with the registration, receipt, and delivery of ballots

by traditional mail. The Federal Voting Assistance Program (FVAP), a United States

Department of Defense (DoD) controlled program, has been systematically gathering,

analyzing, and reporting on the voter’s experience, and exploring new technologies

to improve the delivery of registration and ballot materials.

RedPhone, LLC., a Virginia-based information assurance and security consultancy to

the U.S. DoD, civilian, and state governments, as well as commercial enterprises,

was contracted to provide penetration testing services to CALIBRE Systems in

support of the FVAP to test and evaluate the security of three Internet voting

systems. The penetration test team was led by CALIBRE Management, however, the

primary responsibility for the testing and analysis resided with RedPhone, LLC.

Additionally, RedPhone, LLC. prepared the testing scenario and the rules of

engagement that the Air Force Institute of Technology (AFIT) and other outside

penetration testing teams would use to determine the scope and boundaries of the

engagement. The fictitious Operation Orange exercise and the rules of engagement
are listed within the appendices.

Beginning in May of 2011, and culminating in the actual penetration testing and

mock election exercise that spanned 72 hours from August 2-4, 2011, all three

participating vendors’ systems were carefully evaluated for their security

posture, defensive capabilities, critical logging and security architecture

limitations. Historically, the application development processes associated with

these critical applications have not followed industry best practices. This flawed

state is the result of undisciplined software development, and a process that

failed to encourage developers to anticipate or fix security holes. The closed-

source approach to software development, which shielded the source code from public

review and comment, only served to delay the necessary scrutiny. However, all three

vendors have been highly supportive of these tests, and it is obvious that they

have made great strides to improve the security posture of their respective

products. Six independent technical security experts with an extensive background

in web application security and information assurance were charged with attempting

to breach the security of each of the three participating vendors. Two AFIT cyber

security teams were also participating in the penetration testing process. This

 6

report is the culmination of the penetration test team’s findings, potential

mitigations, and recommendations.

Penetration testing typically falls into the following three categories: “White

box” testing is performed with the full knowledge and support of the vendor, and

the vendor provides unlimited access to the software, supporting documentation and

staff. “Grey box” testing is a partial knowledge test scenario where the test

team has only limited knowledge of the vendor’s products and services, and the

rest must be obtained via research. In “black box” testing, the test teams are

given very little if any advanced knowledge of the vendor’s products, and

therefore, must gain as much knowledge as possible independently in a discovery and

reconnaissance effort. The penetration test team for this exercise used a “black

box” approach, wherein little information is provided from the vendors, and only a

brief window is available to research each vendor to prepare an attack strategy.

Although the penetration test teams designed various attacks, they generally fell

into one of five categories:

1. vote manipulation at the client work station PC or server databases,

2. attacks aimed at breaking the authentication mechanism for PIN’s or

administrative access,

3. attacks directed at defeating voter anonymity,

4. analysis of data in transit that could have been altered, or

5. denial-of-service that prevents voters from being able to reach or cast
votes.

Most attack vectors fell into the first category.

The RedPhone penetration test team applied the Open Web Application Security

Project (OWASP) evaluation methodology of attack mapping, threat modeling, and poor

trust relationship failure analysis to assess where to focus their attention, and

then used standard pen-testing tools including attacking physical security, network

scanning to locate and exploit vulnerabilities in each of the vendor system. This

approach does not look at possible vulnerabilities that may be inherent in the

system architecture or data handling procedures at the precinct level. Because of

the very limited time and resources available, RedPhone, LLC. adopted an almost

entirely ad hoc approach, focusing our attention on those parts of the system that

we believed might provide the best attack vector to less secure devices within the

DMZ. While we used some source code analysis tools—and several widely used

“hacking” tools like Nessus, NMAP and Metasploit—we applied them only

selectively, and instead adopted a more “curious” strategy most often used by an

 7

attacker that seeks out weaknesses in the places where he would most likely find

vulnerabilities, and then moving on to the next place of potential weakness. This

is a very common approach used when limited time and information is available, and

when known security is in place, such as out-sourced managed firewalls, routers, or

intrusion detection and prevention devices. Our overall impression of the security

posture for all three participating vendors was good. We did not find any

significant technical security concerns, only minor correctable issues that can

easily be mitigated. While time constraints were the biggest limitation, we did

find at least one issues involving SSH installed on a server, presumably for remote

management purposes. This was the most serious findings, as given more time, we

could have likely cracked the password and gained access to the server. We found

obvious places where SQL-injection exists, and were tested, but not to the extent

that any were successful. Cross-site scripting (reflected) is another case wherein

proper coding procedure isn’t being followed; however, other mitigating security

controls were in place that did not allow for successful penetration. We’ve

documented a good number of informational findings that should be used to improve

overall UOCAVA best practice security guidelines.

RedPhone wishes to emphasize that our results do not extend beyond the scope of our

investigation of the technical security of the application as seen from the

outside. Our scope was limited to that which is defined in our contract with

CALIBBRE Systems, and do not contend that these systems are correct or secure

beyond the specific findings we've addressed here. Unless otherwise noted, the

results of this investigation should be assumed to be relevant only to these three

vendor systems and the software version used for this test.

GLOBAL OBJECTIVES

 Breach the security of each vendor’s voting systems and gain access to

sensitive information on the DMZ Network where a tangential attack vector

could be made into the more secure voting systems.

 To emulate a realistic technical threat to the ATF computer networks from

persons having no prior access or knowledge other than information that is

openly available on the Internet;

 To discover and exploit any vulnerability or combination of vulnerabilities

found on the system in order to meet the stated objective of the penetration

test; and

 To test the extent an organization’s security incident response capability

is alerted and to gauge the response to such suspicious activity.

 8

 Recommend best security practices and guidelines that would mitigate these

attacks.

PENETRATION TESTING ARCHITECTURE

The AFIT network architecture used by the two internal penetration testing teams is

a traditional network architecture that includes a test lab environment, routers,

firewalls, a DMZ, and unfiltered access out to the Internet where the penetration

test teams used MicroSoft Internet Explorer and Mozilla Firefox browsers to connect

to the target servers and local workstations used as voting stations. The AFIT

penetration testing team used multiple tools that included, Nessus, NMAP,

Metasploit and other tools found on the BackTrack 5 live CD. A complete list of

tools used by the AFIT test teams will be provided with their documentation. The

RedPhone penetration team performed all their tests remotely, but was on site daily

to assist with AFIT testing coordination and support. The laptops used by the AFIT

teams were located with the lab environment and provided with unfiltered access to

the Internet; the voting station laptops were located within the AFIT’s Doolittle

lounge where other Air Force personnel could use them for simulated voting. There

were no physical security controls placed upon the voting work stations. Below is a

high-level representation of the AFIT information assurance network used for the

testing. IP addresses have been removed or blacked out.

Figure 1. AFIT Network Architecture

 9

Findings

Each of the vendor’s systems provided a level of security that was consistent with

most business and technical security best practices. Each vendor’s automated

security systems detected our attempts to breach the security of the applications

at the server side, and response and notification times were well within service

level agreement time frames. Also, each vendor was able to quickly identify the

attacking IP addresses, shut down the attack, and provide log verification.

Therefore, we are confident that each vendor’s security systems could detect and

respond to most attempts to breach the security and gain access to the system.

Specific technical findings are listed below:

FINDING NO. 1: SSH
SEVERITY: HIGH

Brute-force authentication attacks against one vendor’s Secure Shell (SSH) service

was not successful, but this service should never be made available to a production

server, as penetration is almost assured given ample time.

Issue Background

US-CERT issues SSH concerns frequently and should be heeded. The SSH is a network

protocol that creates a secure channel between two networked devices in order to

allow data to be exchanged. SSH can create this secure channel by using Cipher

Block Chaining (CBC) mode encryption. This mode adds a feedback mechanism to a

block cipher that operates in a way that ensures that each block is used to modify

the encryption of the next block.

SSH contains a vulnerability in the way certain types of errors are handled. Attacks leveraging this

vulnerability would lead to the loss of the SSH session. According to CPNI Vulnerability Advisory

SSH:

If exploited, this attack can potentially allow an attacker to recover up to
32 bits of plaintext from an arbitrary block of ciphertext from a connection
secured using the SSH protocol in the standard configuration. If OpenSSH is
used in the standard configuration, then the attacker’s success probability
for recovering 32 bits of plaintext is 2^{-18}. A variant of the attack
against OpenSSH in the standard configuration can verifiably recover 14 bits
of plaintext with probability 2^{-14}. The success probability of the attack
for other implementations of SSH is not known.

Impact
An attacker may be able to recover up to 32 bits of plaintext from an arbitrary

http://www.cpni.gov.uk/Docs/Vulnerability_Advisory_SSH.txt
http://www.cpni.gov.uk/Docs/Vulnerability_Advisory_SSH.txt
http://www.cpni.gov.uk/Docs/Vulnerability_Advisory_SSH.txt

 10

block of ciphertext.

Issue Mitigation
We are currently unaware of a practical solution to this problem. CERT recommends

the use of CTR Mode. This mode generates the keystream by encrypting successive

values of a “counter” function. For more information see the Block Cipher Modes

article on wikipedia.

In order to mitigate this vulnerability, SSH can be setup to use CTR mode rather

CBC mode. According to CPNI Vulnerability Advisory SSH:

The most straightforward solution is to use CTR mode instead of CBC mode,
since this renders SSH resistant to the attack. An RFC already exists to
standardise counter mode for use in SSH (RFC 4344)...

Systems Affected
Vendor Status Date Notified Date Updated

Bitvise Vulnerable 2008-11-07 2008-11-24

FiSSH Vulnerable 2008-11-07 2008-11-24

Icon Labs Vulnerable 2008-11-07 2008-11-24

OpenSSH Vulnerable 2008-11-07 2008-11-24

OSSH Vulnerable 2008-11-07 2008-11-24

PuTTY Vulnerable 2008-11-07 2009-01-05

Redback Networks, Inc. Vulnerable 2008-11-07 2008-11-24

SSH Communications Security

Corp
Vulnerable 2008-11-07 2008-11-24

TTSSH Vulnerable 2008-11-07 2008-11-24

VanDyke Software Vulnerable 2008-11-07 2009-01-12

Wind River Systems, Inc. Vulnerable 2008-11-07 2008-11-24

References

http://www.cpni.gov.uk/Docs/Vulnerability_Advisory_SSH.txt

http://isc.sans.org/diary.html?storyid=5366

http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

FINDING NO. 2: SQL INJECTION
SEVERITY: MODERATE

The findings listed below are generic and do not reflect any specific vendor’s

environment. We have kept them generic so that FVAP can assess the overall security

posture of these voting systems and make determination about the high-level

http://www.cpni.gov.uk/Docs/Vulnerability_Advisory_SSH.txt
https://www.kb.cert.org/vuls/id/MAPG-7L6HBU
https://www.kb.cert.org/vuls/id/MAPG-7L6HBY
https://www.kb.cert.org/vuls/id/MAPG-7L6HC4
https://www.kb.cert.org/vuls/id/MAPG-7L6HC8
https://www.kb.cert.org/vuls/id/MAPG-7L6HCD
https://www.kb.cert.org/vuls/id/MAPG-7L6HCF
https://www.kb.cert.org/vuls/id/MAPG-7L6HCH
https://www.kb.cert.org/vuls/id/MAPG-7L6HCN
https://www.kb.cert.org/vuls/id/MAPG-7L6HCN
https://www.kb.cert.org/vuls/id/MAPG-7L6HCX
https://www.kb.cert.org/vuls/id/MAPG-7L6HD3
https://www.kb.cert.org/vuls/id/MAPG-7L6HD7
http://www.cpni.gov.uk/Docs/Vulnerability_Advisory_SSH.txt
http://isc.sans.org/diary.html?storyid=5366
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

 11

guidance and policy recommendations that may be required.

There are five instances of this issue:

Issue background
SQL injection vulnerabilities arise when user-controllable data are incorporated

into database SQL queries in an unsafe manner. An attacker can supply crafted input

to break out of the data context in which their input appears and interfere with

the structure of the surrounding query.

Various attacks can be delivered via SQL injection, including reading or modifying

critical application data, interfering with application logic, escalating

privileges within the database, and executing operating system commands.

Issue remediation
The most effective way to prevent SQL injection attacks is to use parameterised

queries (also known as prepared statements) for all database access. This method

uses two steps to incorporate potentially tainted data into SQL queries: first, the

application specifies the structure of the query, leaving placeholders for each

item of user input; second, the application specifies the contents of each

placeholder. Because the structure of the query has already been defined in the

first step, it is not possible for malformed data in the second step to interfere

with the query structure. Documentation should be reviewed for the database and

application platform to determine the appropriate APIs, which can be used to

perform parameterised queries. It is strongly recommended that every variable data
item that is incorporated into database queries is parameterised, even if it is not

obviously tainted, to prevent oversights occurring and avoid vulnerabilities being

introduced by changes elsewhere within the code base of the application.

FVAP should be aware that some commonly employed and recommended mitigations for

SQL injection vulnerabilities are not always effective:

 One common defense is to double up any single quotation marks appearing

within user input before incorporating that input into a SQL query. This

defense is designed to prevent malformed data from terminating the string in

which they are inserted. However, if the data being incorporated into queries

are numeric, then the defense may fail, because numeric data may not be

encapsulated within quotes, in which case only a space is required to break

out of the data context and interfere with the query. Further, in second-

order SQL injection attacks, data that has been safely escaped ("escaping" is

a technique used to ensure that characters are treated as data, not as

characters) when initially inserted into the database is subsequently read

 12

from the database and then passed back to it again. Quotation marks that have

been doubled up initially will return to their original form when the data

are reused, allowing the defense to be bypassed.

 Another often cited defense is to use stored procedures for database access.

While stored procedures can provide security benefits, they are not

guaranteed to prevent SQL injection attacks. The same kinds of

vulnerabilities that arise within standard dynamic SQL queries can arise if

any SQL is dynamically constructed within stored procedures. Further, even if

the procedure is sound, SQL injection can arise if the procedure is invoked

in an unsafe manner using user-controllable data.

FINDING NO.3: CROSS-SITE SCRIPTING (REFLECTED)
SEVERITY: MODERATE

Issue detail
The value of the parenturl request parameter is copied into a JavaScript string,

which is encapsulated in single quotation marks. The payload bb8cf’%3b6b50cb864d6

was submitted in the parenturl parameter. This input was echoed as

bb8cf’;6b50cb864d6 in the application’s response.

This behavior demonstrates that it is possible to terminate the JavaScript string

into which data are being copied. An attempt was made to identify a full proof-of-

concept attack for injecting arbitrary JavaScript, but this was not successful. The

application’s behavior should be manually examined and any unusual input

validation or other obstacles that may be in place should be identified.

Remediation detail
Echoing user-controllable data within a script context is inherently dangerous, and

can make XSS attacks difficult to prevent. If at all possible, the application

should avoid echoing user data within this context.

Issue background
Reflected cross-site scripting vulnerabilities arise when data are copied from a

request and echoed into the application’s immediate response in an unsafe way. An

attacker can use the vulnerability to construct a request that, if issued by

another application user, will cause JavaScript code supplied by the attacker to

execute within the user’s browser in the context of that user’s session with the

application.

The attacker-supplied code can perform a wide variety of actions, such as stealing

 13

the victim’s session token or login credentials, performing arbitrary actions on

the victim’s behalf, and logging their keystrokes.

Users can be induced to issue the attacker’s crafted request in various ways. For

example, the attacker can send a victim a link containing a malicious URL in an

email or instant message. They can submit the link to popular websites that allow

content authoring, for example, in blog comments. And they can create an innocuous

looking website which causes anyone viewing it to make arbitrary cross-domain

requests to the vulnerable application (using either the GET or the POST method).

The security impact of cross-site scripting vulnerabilities is dependent upon the

nature of the vulnerable application, the kinds of data and functionality that it

contains, and the other applications that belong to the same domain and

organization. If the application is used only to display non-sensitive public

content, with no authentication or access control functionality, then a cross-site

scripting flaw may be considered low risk. However, if the same application resides

on a domain that can access cookies for other more security-critical applications,

then the vulnerability could be used to attack those other applications, and so may

be considered high risk. Similarly, if the organization that owns the application

is a likely target for phishing attacks, then the vulnerability could be leveraged

to lend credibility to such attacks by injecting Trojan functionality into the

vulnerable application and exploiting users’ trust in the organization in order to

capture credentials for other applications that it owns. In many kinds of

application, such as those providing online banking functionality, cross-site

scripting should always be considered high risk.

Remediation background
In most situations where user-controllable data are copied into application

responses, cross-site scripting attacks can be prevented using two layers of

defenses:

 Input should be validated as strictly as possible on arrival, given the kind

of content that it is expected to contain. For example, personal names should

consist of alphabetical and a small range of typographical characters, and be

relatively short; a year of birth should consist of exactly four numerals;

email addresses should match a well-defined regular expression. Input which

fails the validation should be rejected, not sanitized.

 User input should be HTML-encoded at any point where it is copied into

application responses. All HTML metacharacters, including < > " ‘ and =,

should be replaced with the corresponding HTML entities (< > etc).

In cases where the application’s functionality allows users to author content

 14

using a restricted subset of HTML tags and attributes (for example, blog comments

that allow limited formatting and linking), it is necessary to parse the supplied

HTML to validate that it does not use any dangerous syntax; this is a non-trivial

task.

FINDING NO.4: SSL COOKIE
SEVERITY: LOW

Issue detail
The following cookie was issued by the application and does not have the secure

flag set:

 ASP.NET_SessionId=51dw1odzrv11hdjzl5ztmosw; path=/; HttpOnly

The cookie appears to contain a session token, which may increase the risk

associated with this issue. The contents of the cookie should be reviewed to

determine its function.

Issue background
If the secure flag is set on a cookie, then browsers will not submit the cookie in

any requests that use an unencrypted HTTP connection, thereby preventing the cookie

from being trivially intercepted by an attacker monitoring network traffic. If the

secure flag is not set, then the cookie will be transmitted in clear-text if the

user visits any HTTP URLs within the cookie’s scope. An attacker may be able to

induce this event by feeding a user suitable links, either directly or via another

website. Even if the domain that issued the cookie does not host any content that

is accessed over HTTP, an attacker may be able to use links of the form

http://example.com:443/ to perform the same attack.

Issue remediation
The secure flag should be set on all cookies that are used for transmitting

sensitive data when accessing content over HTTPS. If cookies are used to transmit

session tokens, then areas of the application that are accessed over HTTPS should

employ their own session handling mechanism and the session tokens used should

never be transmitted over unencrypted communications.

FINDING NO. 5: SSL CERTIFICATES
SEVERITY: LOW

This finding is more informational than an actual vulnerability. The vendor had

“self-signed” the certificate, and therefore, would not be a trusted certificate,

but the vendor had brought this to our attention and explained that this would not

be the norm. The other two vendors had implemented the use of certificates

 15

properly.

Issue background
SSL helps to protect the confidentiality and integrity of information in transit

between the browser and server, and to provide authentication of the server’s

identity. To serve this purpose, the server must: present an SSL certificate that

is valid for the server’s hostname, is issued by a trusted authority and is valid

for the current date. If any one of these requirements is not met, SSL connections

to the server will not provide the full protection for which SSL is designed.

It should be noted that various attacks exist against SSL in general, and in the

context of HTTPS web connections. It may be possible for a determined and suitably-

positioned attacker to compromise SSL connections without user detection even when

a valid SSL certificate is used.

FINDING NO. 6: COOKIE WITHOUT HTTPONLY FLAG SET
SEVERITY: LOW

This is mostly informational but does constitute a concern.

Issue detail
The following cookie was issued by the application and does not have the HttpOnly

flag set:

 JSESSIONID=AB6295DFFAFA6F01E835E88C50F597ED; Path=/portal-webapp; Secure

The cookie appears to contain a session token, which may increase the risk

associated with this issue. The contents of the cookie should be reviewed to

determine its function.

Issue background
If the HttpOnly attribute is set on a cookie, then the cookie’s value cannot be

read or set by client-side JavaScript. This measure can prevent certain client-side

attacks, such as cross-site scripting, from trivially capturing the cookie’s value

via an injected script.

Issue remediation
There is usually no good reason not to set the HttpOnly flag on all cookies. Unless

legitimate client-side scripts are specifically required within an application to

read or set a cookie’s value, the HttpOnly flag should be set by including this

attribute within the relevant Set-cookie directive.

Guidance should make implementers aware that the restrictions imposed by the

 16

HttpOnly flag can potentially be circumvented in some circumstances, and that

numerous other serious attacks can be delivered by client-side script injection,

aside from simple cookie stealing.

FINDING NO. 7: REFERER-DEPENDENT RESPONSE
SEVERITY: INFORMATIONAL

Issue description
The application’s responses appear to depend systematically on the presence or

absence of the Referer header in requests. This behavior does not necessarily

constitute a security vulnerability, and the nature of and reason for the

differential responses should be investigated to determine whether a vulnerability

is present.

Common explanations for Referer-dependent responses include:

 Referer-based access controls, where the application assumes that if the user

has arrived from one privileged location then he/she is authorized to access

another privileged location. These controls can be trivially defeated by

supplying an accepted Referer header in requests for the vulnerable function.

 Attempts to prevent cross-site request forgery attacks by verifying that

requests to perform privileged actions originated from within the application

itself and not from some external location. Such defenses are not robust—

methods have existed through which an attacker can forge or mask the Referer

header contained within a target user’s requests by leveraging client-side

technologies such as Flash and other techniques.

 Delivery of Referer-tailored content, such as welcome messages to visitors

from specific domains, search-engine optimisation (SEO) techniques, and other

ways of tailoring the user’s experience. Such behaviors often have no

security impact, however, unsafe processing of the Referer header may

introduce vulnerabilities such as SQL injection and cross-site scripting. If

parts of the document (such as META keywords) are updated based on search

engine queries contained in the Referer header, then the application may be

vulnerable to persistent code injection attacks, in which search terms are

manipulated to cause malicious content to appear in responses served to other

application users.

Issue remediation
The Referer header is not a robust foundation on which to build any security

measures, such as access controls or defenses against cross-site request forgery.

Any such measures should be replaced with more secure alternatives that are not

 17

vulnerable to Referer spoofing.

If the contents of responses is updated based on Referer data, then the same

defenses against malicious input should be employed here as for any other kinds of

user-supplied data.

FINDING NO. 8: OPEN REDIRECTION
SEVERITY: INFORMATIONAL

Issue detail
The value of the Referer HTTP header is used to perform an HTTP redirect. The

payload //acec8732e3c7ad76d/a%3fhttp%3a//www.google.com/search%3fhl%3den%26q%3d

was submitted in the Referer HTTP header. This caused a redirection to the

following URL:

 //acec8732e3c7ad76d/a%3fhttp%3a//www.google.com/search%3fhl%3den%26q%3d

The application attempts to prevent redirection attacks by blocking absolute

redirection targets starting with http:// or https://. However, an attacker can

defeat this defense by omitting the protocol prefix from their absolute URL. If a

redirection target starting with // is specified, then the browser will use the

same protocol as the page that issued the redirection.

Because the data used in the redirection are submitted within a header, the

application’s behavior is unlikely to be directly useful in lending credibility to

a phishing attack. This limitation considerably mitigates the impact of the

vulnerability.

Remediation detail
When attempting to block absolute redirection targets, the application should

verify that the target begins with a single slash followed by a letter and should

reject any input containing a sequence of two slash characters.

Issue background
Open redirection vulnerabilities arise when an application incorporates user-

controllable data into the target of a redirection in an unsafe way. An attacker

can construct a URL within the application, which causes a redirection to an

arbitrary external domain. This behavior can be leveraged to facilitate phishing

attacks against users of the application. The ability to use an authentic

application URL, targeting the correct domain with a valid SSL certificate (if SSL

is used), lends credibility to the phishing attack because many users, even if they

verify these features, will not notice the subsequent redirection to a different

 18

domain.

Remediation background
If possible, applications should avoid incorporating user-controllable data into

redirection targets. In many cases, this behavior can be avoided in two ways:

 Remove the redirection function from the application, and replace links to it

with direct links to the relevant target URLs.

 Maintain a server-side list of all URLs that are permitted for redirection.

Instead of passing the target URL as a parameter to the redirector, pass an

index into this list.

If it is considered unavoidable for the redirection function to receive user-

controllable input and incorporate this into the redirection target. One of the

following measures should be used to minimize the risk of redirection attacks:

 The application should use relative URLs in all of its redirects, and the

redirection function should strictly validate that the URL received is a

relative URL.

 The application should use URLs relative to the web root for all of its

redirects, and the redirection function should validate that the URL received

starts with a slash character. It should then prepend

http://yourdomainname.com to the URL before issuing the redirect.

 The application should use absolute URLs for all of its redirects, and the

redirection function should verify that the user-supplied URL begins with

http://yourdomainname.com/ before issuing the redirect.

FINDING NO. 9: CROSS-DOMAIN SCRIPT INCLUDE
SEVERITY: INFORMATIONAL

Issue detail
The response dynamically includes the following script from another domain:

 https://seal.verisign.com/getseal?host_name=www.intvoting.com&size=S&use_flas

h=NO&use_transparent=NO&lang=en

Issue background
When an application includes a script from an external domain, this script is

executed by the browser within the security context of the invoking application.

The script can therefore do anything that the application’s own scripts can do,

 19

such as accessing application data and performing actions within the context of the

current user.

If a script from an external domain is included, then that domain is trusted with

the data and functionality of your application, and the domain’s own security to

prevent an attacker from modifying the script to perform malicious actions within

your application.

Issue remediation
Scripts should not be included from untrusted domains. If there is a requirement

that a third-party script appears to fulfill, then ideally the contents of that

script should be copied onto your own domain and include it from there. If that is

not possible (e.g., for licensing reasons), then re-implementing the script’s

functionality within your own code should be considered.

FINDING NO.10: EMAIL ADDRESSES DISCLOSED
 SEVERITY: INFORMATIONAL

Issue detail

During the discovery and reconnaissance phase, we found many vendor email addresses were

available. Caution should be taken to train all employees of spear phishing attacks. Spear phishing

describes any highly targeted phishing attack. Spear phishers send e-mail that appears genuine to some

or all the employees or members within a certain company, government agency, organization, or group.

The message might look like it comes from your employer, or from a colleague sending an e-mail

message to everyone in the company (such as the person who manages the computer systems) and

could include requests for user names or passwords.

The truth is that the e-mail sender information has been faked or “spoofed.” Whereas traditional

phishing scams are designed to steal information from individuals, spear phishing scams work to gain

access to a company’s entire computer system. If an employee responds with a user name or password,

or if click links or open attachments in a spear phishing e-mail, pop-up window, or website, he/she

might become a victim of identity theft and might put his/her employer or group at risk.

Spear phishing also describes scams that target people who use a certain product or website. Scam

artists use any information they can to personalize a phishing scam to as specific a group as possible.

Issue background
The presence of email addresses within application responses does not necessarily

constitute a security vulnerability. Email addresses may appear intentionally

within contact information, and many applications (such as web mail) include

arbitrary third-party email addresses within their core content.

However, email addresses of developers and other individuals (whether appearing on-

 20

screen or hidden within page source) may disclose information that is useful to an

attacker; for example, they may represent usernames that can be used at the

application’s login, and they may be used in social engineering attacks against

the organization’s personnel. Unnecessary or excessive disclosure of email

addresses may also lead to an increase in the volume of spam email received.

Issue remediation
FVAP should review and offer guidance concerning the email addresses being

disclosed by the application, and consider removing any that are unnecessary, or

replacing personal addresses with anonymous mailbox addresses (such as

helpdesk@example.com).

FINDING NO. 11: ROBOTS.TXT FILE
SEVERITY: LOW/INFORMATIONAL

While this issue can often give away information to an attacker, this particular

instance did not. Therefore, this is informational only.

Issue detail
The web server contains a robots.txt file.

Issue background
The file robots.txt is used to give instructions to web robots, such as search

engine crawlers, about locations within the website that robots are allowed, or not

allowed, to crawl and index.

The presence of the robots.txt does not in itself present any kind of security

vulnerability. However, it is often used to identify restricted or private areas of

a site’s contents. The information in the file may, therefore, help an attacker to

map out the site’s contents, especially if some of the locations identified are

not linked from elsewhere in the site. If the application relies on robots.txt to

protect access to these areas and does not enforce proper access control over them,

then this presents a serious vulnerability.

Issue remediation
The robots.txt file is not itself a security threat, and its correct use can

represent good practice for non-security reasons. You should not assume that all

web robots will honor the file’s instructions. Rather, assume that attackers will

pay close attention to any locations identified in the file. Do not rely on

robots.txt to provide any kind of protection over unauthorized access.

mailto:helpdesk@example.com

 21

FINDING NO. 12: CACHEABLE HTTPS RESPONSE
SEVERITY: INFORMATIONAL

There are three instances of this issue. This is a minor issue, bordering on

informational. These are the result of implementation errors that can be easily

corrected.

Issue description
Unless directed otherwise, browsers may store a local cached copy of content

received from web servers. Some browsers, including Internet Explorer, cache

content accessed via HTTPS. If sensitive information in application responses is

stored in the local cache, then this may be retrieved by other users who have

access to the same computer at a future time.

Issue remediation
The application should return caching directives instructing browsers not to store

local copies of any sensitive data. Often, this can be achieved by configuring the

web server to prevent caching for relevant paths within the web root.

Alternatively, most web development platforms allow control of the server’s

caching directives from within individual scripts. Ideally, the web server should

return the following HTTP headers in all responses containing sensitive content:

 Cache-control: no-store

 Pragma: no-cache

FINDING NO. 13: SCRIPT FILES
SEVERITY: MODERATE

We successfully downloaded all site scripts from every vendor, no exceptions. With

more time allotted to a penetration, this would be a severe issue. Going through

the script’s contents (and comment sections, etc.) would allow for detailed

mapping of site functionality. Hardening of application server configurations is

highly recommended for each vendor, in order to mitigate this threat.

Additional tests performed
These types of Distributed Denial-of-Service (DDoS) attacks are not new.

Organizations have been battling them since they became popular in the late

1990s. While techniques to defend against DDoS attacks have become more

sophisticated, they still represent a difficult challenge and major risk. Limited

Denial-of-Service (DoS) attacks were performed. These were unsuccessful. However,

mention should be given that no DDoS attacks were performed due to lack of

 22

resources available for the test. It is entirely feasible for a mass denial attack

to be successful, and this is an eventuality that is difficult to mitigate.

The DoS attack is focused on making unavailable a resource (site, application, server) for the purpose it

was designed. There are many ways to make a service unavailable for legitimate users by manipulating

network packets, programming, logical, or resources handling vulnerabilities, among others. If a

service receives a very large number of requests, it may stop providing service to legitimate users. In

the same way, a service may stop if a programming vulnerability is exploited.

Sometimes the attacker can inject and execute arbitrary code while performing a DoS attack in order to

access critical information or execute commands on the server. DoS attacks significantly degrade

service quality experienced by legitimate users. It introduces large response delays, excessive losses,

and service interruptions, resulting in direct impact on availability.

DoS & DDoS Locking Customer Accounts

The first DoS case to consider involves the authentication system of the target application. A common

defense to prevent brute-force discovery of user passwords is to lock an account from use after between

three to five failed attempts to login. This means that even if a legitimate user were to provide their

valid password, they would be unable to login to the system until their account has been unlocked. This

defense mechanism can be turned into a DoS attack against an application if there is a way to predict

valid login accounts.

Note: there is a business vs. security balance that must be reached based on the specific circumstances

surrounding a given application. There are pros and cons to locking accounts, to customers being able

to choose their own account names, to using systems such as CAPTCHA, and the like. Each enterprise

will need to balance these risks and benefits, but not all of the details of those decisions are covered

here. It should be noted that one vendor does incorporate CAPTCHA as a deterrent to this form of

attack. Specific controls to combat DDoS attacks can include:

1. working with the Internet Service Provider (ISP) to establish quality of service rates to limit the

amount of bandwidth one customer can utilize;

2. using firewalls and filtering devices to filter all unnecessary ports and protocols;

3. incorporating redundancy and resiliency into designs of key systems; and

4. utilizing IDS/IPS to identify and block attacks in progress

Related Attacks
 Resource Injection

 Setting Manipulation

 Regular expression Denial of Service - ReDoS

Related Vulnerabilities
 Category: Input Validation Vulnerability

 Category: API Abuse

 23

Summary & Conclusions:

Internet based voting systems should be certified and recertified on a regular

basis since changes to the operating systems, applications, services, protocols

etc. change frequently. All defensive strategies should be risk-based and right-

sized to match the risk. In a perfect world, every company could employ every

defense possible to protect against every type of attack on every part of its

infrastructure. In reality, however, time and resources are not unlimited. Defenses

have to be selected and deployed based on a cost-benefit methodology. Voting

systems face unique threats, some are at the nation-state level, and therefore,

unlimited resources, and game changing technologies could be leveraged to crash

services, corrupt votes via insider threats, or devise methods to social engineer

perceptions causing voter disenfranchisement. The controls must be appropriate to

the risks.

RedPhone suggests that the FVAP determine what department within the federal government is

responsible for determining threats associated with the voting process so that an appropriate risk

assessment can be done based on known threats. FVAP should use formal risk analysis and cost-benefit

analysis to help ensure their control environment is appropriate for their risk profile and tolerance. The

risk analysis should include several key steps.

First, the FVAP should perform a formal risk analysis to determine the actual risk to the environment.

The risk assessment should consider the value of the assets being protected, likelihood of probable

threats and attack vectors, impact of a successful attack, inherent risk of the condition, existing

safeguards, and the residual risk as compared to current tolerance.

Next, based on the results of the risk assessment, determine what areas of the voting process are

operating at unacceptable levels of risk. Identify controls that can reduce the likelihood of the threat

source or lessen the impact to acceptable levels. Perform a cost-benefit analysis to determine if the

suggested controls provide an appropriate risk reduction benefit.

The next step should be to implement appropriate controls based on this analysis. Test the controls and

likely attack scenarios to validate the controls operate properly and provide the desired effect. Employ

monitoring, metrics and measures to ensure key controls continue to perform adequately and provide

the expected protections. Continually update the risk assessment as new threats emerge, the business

makes changes or other factors change that would affect the risk assessment results. The risk

assessment should be updated at least annually to ensure it is still appropriate for the organization and

the current environment.

It should be noted that this test had several limitations that would not exist in the “real world”, and

therefore additional testing is highly recommended. Also, it should be noted that all testing is a “point-

in-time-analysis”, and therefore should never be considered lasting. Testing should be performed with

some regularity to maintain the highest level of security posture at all times.

 24

Operational policies for high confidentiality, integrity and availability focus on setting and establishing

processes, policies, and strict configuration and patch management. They are divided into the following

categories:

 Service Level Management for High Availability

 Planning Capacity to Promote High Availability

 Change Management for High Availability

 Backup and Recovery Planning for High Availability

 Disaster Recovery Planning

 Planning Scheduled Outages

 Staff Training for High Availability

 Documentation as a Means of Maintaining High Availability

 Physical Security Policies and Procedures for High Availability

In addition to the above policies, a well defined and documented software development life-cycle

should be adopted. The Capability Maturity Model Integration (CMMI) is a widely followed and

adopted best practice that defines practices that include eliciting and managing

requirements, decision making, measuring performance, planning work, handling

risks, and more. None of the vendors’ voting systems are being developed using

such a defined life-cycle. We recommend that voting systems vendors adopt rigorous

software engineering practices based on CMMI level-3 or better to ensure that

system life-cycle, documentation, and methodologies are not random, but instead

meet or exceed best practices.

The single greatest risk to Internet voting from an end-users computer is the fact

that election officials do not have access to the voting workstation to determine

its integrity, nor the upstream Internet supporting infrastructure. However, if a

kiosk approach is employed, the election officials still have some control over the

environment; it is recommended that the kiosk periodically send “status votes” or

“test ballots” that test the integrity and accuracy of the voting system and the

end-to-end transmission of the encrypted data. Control of the client-side voting

computer, the local network, or upstream Internet Service Providers (ISP's)

infrastructure will always present significant challenges to Internet based voting.

Therefore, it is imperative that both end-points, and the lines of communication be

as secure as possible to maintain the vote integrity, confidentiality, system

availability and voter anonymity.

 25

Appendix – C Operation Orange

Jonathan Wright is a tall, handsome, slightly exotic looking Harvard grad, who has

served in the U.S. Senate for 8 years. He has recently won the appointment as a

candidate for the office of the President of the United States. He has the backing

of the military and firefighters of America, as well as various police districts.

However, unbeknownst to most of the American public is the fact that though he was

born in the U.S., Senator Wright’s grandfather, still resides in this fictional

nation state.

Now, this nation state is very interested in the latest election because the

incumbent president of the U.S. is considering a boycott of all CFS light bulbs, a

major product for this nation state. For years they have been the only

manufacturers of this product; however, the light bulbs often have defects that

have caused severe injuries to American consumers—leading to a public outcry

against the product. American and Mexican companies are now producing a superior,

if more expensive, light bulb.

Because this issue is in the fore front of the American psyche, the incumbent

president wants it to be one of the issues of his platform. A boycott of this

product would be a devastating financial blow to their economy. This nation state

requires a president sympathetic to their cause in the oval office.

Mr. Wright will champion the product over an American or Mexican one. Primarily,

because Mr. Wright still has close family that resides in this nation state; and

therefore, he should honor the family name as a proud descendant. This nation state

government believes that Mr. Wright would want to support his family’s home

nation, and maintain their status has the premier supplier of CFS light bulbs.

Therefore, this nation state is confident that they will be able to hack the

American electronic voting systems to ensure Mr. Wright’s election to the office

of president.

Specific Objectives:

Acting as hackers, your objective is to hack into the voting system, obtain

administrator level rights and access, and change the votes so that Senator Wright
becomes the next president of the United States. You must “recon” the targeted

electronic voting system(s) and thoroughly plan your plan of attack employing

sophisticated penetration techniques. If the changes are detected and an audit

deems hacking has altered the targeted system(s), the election will merely be

deemed void or corrupt and a new one will take place using old fashioned methods

beyond the control of the nation state. Furthermore, you must do your best to cover

 26

your “tracks” such that cyber security personnel will not be able to forensically

trace the hack to your IP address.

You will have a limited amount of time to perform your reconnaissance of the vendor

system(s), determine what tools to use, and ultimately penetrate the system(s) and

make the needed changes to ensure the desired outcome. A denial of service attack

would quickly be detected and traced, therefore this method of disruption should

not be considered.

Keeping in mind that these penetration tests are intended to provide the following:

 Evaluate the protection of the Vendor’s electronic voting systems with a

special emphasis on the effectiveness of logical access and system software

security controls

 Provide value to the Vendor’s electronic voting system by identifying

opportunities to significantly strengthen applicable controls within

budgetary and operational constraints

i.e., documented mitigation strategies, or security patches and/or procedures

that improve the security posture of their respective systems.

 To facilitate timely, cost-effective completion of this project, Tiger Teams

will make maximum practical use of the relevant work of others where possible

(i.e., internal assessments by the auditee, internal and external audits, and

vulnerability testing on covered IT assets).

 In order to optimize the effectiveness of the Penetration Test team members,

the Vendor’s need to provide access to systems, services, and employees. To

perform the work specified in this statement of work, the Tiger Teams will

require the following from the customer:

1. Access to relevant personnel including: technical support, data center
personnel, application developers and end-users and functional experts.

2. Relevant documentation including: System Administration Guides, System
Architecture diagrams that include IP addresses of target systems.

Previous security threat assessments if available.

3. A primary point of contact for emergency remediation if needed.

4. Coordination of events with customer team members.

 27

5. Signed NDA, Authorization to Proceed, and the below Rules of Engagement.

 28

Appendix – D Tools

Information Gatheringbr Assbr DMitrybr DNS-Ptrbr dnswalkbr
dns-bruteforcebr dnsenumbr dnsmapbr DNSPredictbr Finger Googlebr
Firewalkbr Goog Mail Enumbr Google-searchbr Goograpebr Gooscanbr
Hostbr Itracebr Netenumbr Netmaskbr Piranabr
Protosbr QGooglebr Relay Scannerbr SMTP-Vrfybr TCtracebr
Network Mappingbr Amap br Assbr Autoscan _Rbr Fpingbr
Hpingbr IKE-Scanbr IKEProbebr Netdiscoverbr Nmapbr
NmapFEbr Pfbr PSK-Crackbr Pingbr Protosbr
Scanrandbr SinFPbr Umitbr UnicornScanbr UnicornScan pgsql e
module version br Analysisbr br Servicesbr SNORTp SIPcrackbr
XProbebr PBNJ br OutputPBNJbr ScanPBNJbr Genlistbr
Vulnerability Identificationbr Absinthebr Bedbr CIRT Fuzzerbr Checkpwdbr
Cisco Auditing Toolbr Cisco Enable Bruteforcerbr Cisco Global Exploiterbr Cisco OCS Mass Scannerbr Cisco Scannerbr
Cisco Torchbr Curlbr Fuzzer br GFI LanGuard br GetSidsbr
HTTP PUTbr Halberdbr Httprintbr Httprint GUIbr ISR-Formbr
Jbrofuzzbr List-Urlsbr Lynxbr Merge Router Configbr Metacoretexbr
Metoscanbr Mezcal HTTPSbr Mibble MIB Browserbr Mistressbr Niktobr
OATbr Onesixtyonebr OpenSSL-Scannerbr Paros Proxybr Peachbr
RPCDumpbr RevHostsbr SMB Bruteforcerbr SMB Clientbr SMB Serverscanbr
SMB-NATbr SMBdumpusersbr SMBgetserverinfobr SNMP Scannerbr SNMP Walkbr
SQL Injectbr SQL Scannerbr SQLLibfbr SQLbrutebr Sidguessbr
SmbKbr Snmpcheckbr Snmp Enumbr Spikebr Stompybr
SuperScanbr TNScmdbr Taofbr VNC_bypauthbr Wapitibr
Yersiniabr sqlanlzbr sqldictbr sqldumploginsbr sqlquerybr
sqluploadbr Penetrationbr Framework-MsfCbr Framework-MsfUpdatebr Framework-Msfclibr
Framework-Msfwebbr Init Pgsql (autopwn)br Milwrm Archivebr MsfClibr MsfConsolebr
MsfUpdatebr OpenSSL-To-Openbr Update Milwrmbr Privilege Escalationbr Ascend attackerbr
CDP Spooferbr Cisco Enable Bruteforcerbr Crunch Dictgenbr DHCPX Flooderbr DNSspoofbr
Driftnetbr Dsniffbr Etherapebr EtterCapbr FileCablebr
HSRP Spooferbr Hash Collisionbr Httpcapturebr Hydrabr Hydra GTKbr
ICMP Redirectbr ICMPushbr IGRP Spooferbr IRDP Responderbr IRDP Spooferbr
Johnbr Lodowepbr Mailsnarfbr Medusabr Msgsnarfbr
Nemesis Spooferbr NetSedbr Netenumbr Netmaskbr Ntopbr
PHossbr PackETHbr Rcrackbr SIPdumpbr SMB Snifferbr
Singbr TFTP-Brutebr THC PPTPbr TcPickbr URLsnarfbr
VNCrackbr WebCrackbr Wiresharkbr Wireshark Wifibr WyDbr
XSpybr chntpwbr Maintaining Accessbr proxybr Backdoorsbr
CryptCatbr HttpTunnel Clientbr HttpTunnel Serverbr ICMPTXbr Iodinebr
NSTXbr Privoxybr ProxyTunnelbr Rinetdbr TinyProxybr
sbdbr socatbr Covering Tracksbr Housekeepingbr Radio Network
 AFragbr ASLeapbr Air Crackbr Air Decapbr Air
Replaybr Airmon Scriptbr Airpwnbr AirSnarfbr Airodumpbr
 Hexdumpbr
Airoscriptbr Airsnortbr CowPattybr FakeAPbr GenKeysbr
Genpmkbr Hotspotterbr Karmabr Kismetbr Load IPWbr
Load acxbr MDKbr MDK for Broadcombr MacChangerbr Unload Driversbr
Wep_crackbr Wep_decryptbr WifiTapbr Wicrawlbr Wlassistantbr
Bluetoothbr Bluebuggerbr Blueprintbr Bluesnarferbr Btscannerbr
Carwhispererbr CuteCombr Ghettotoothbr HCIDumpbr Ussp-Pushbr
OllyDBGbr PcapSipDumpbr PcapToSip_RTPbr SIPSakbr Hexeditbr
SIPdumpbr SIPpbr Smapbr Digital Forensicsbr Allinbr
Autopsybr DCFLDDbr DD_Rescuebr Foremostbr Magicrescuebr
Mboxgrepbr Memfetchbr Memfetch Findbr Pascobr Rootkithunterbr

 29

Sleuthkitbr Vinettobr Reverse Engineeringbr GDB GNU Debuggerbr GDB Console GUIbr
GDB Serverbr GNU DDDbr VOIP & Telephony Analysisbr

 30

Because of some last minute corrections to the ROE/MNDA/ATS documentation, we requested email

confirmation of the acceptance. Those e-mail acceptances are below:

From Vendor-2.com

to Jay Aceto <jay.aceto@redphonecorporation.com>

date Sat, Jul 30, 2011 at 9:35 PM

subject RE: Error found. Please resign ROE’s & Authorizations

to Scan ASAP

 Important mainly because it was sent directly to you.

Jay,

On behalf of Vendor-2 I accept the changed documents. I will bring signed copies Monday.

Vice President

Vendor-2

from @Vendor-3.com

to Jay Aceto <jay.aceto@redphonecorporation.com>

date Mon, Aug 1, 2011 at 9:51 AM

subject RE: Error found. Please resign ROE’s & Authorizations to Scan ASAP

mailed-by Vendor-3.com

Jay,

I accept the corrections on behalf of Vendor-3.

Vendor-3

From: Vendor-1.com>

To: "Jay Aceto (jay.aceto@redphonecorporation.com)"

<jay.aceto@redphonecorporation.com>

Date: Fri, 22 Jul 2011 15:58:37 -0700

Subject: Student Forms

Hi Jay,

Attached are our authorization signatures and Rules of Engagements for the

students…

Vendor-1, Inc.

