

Prepared By:
CALIBRE
6354 Walker Lane, Suite 300
Metro Park
Alexandria, Virginia 22310-3252
www.calibresys.com

Software Assurance Final Report

Prepared For:
Federal Voting Assistance Program
Department of Defense
4800 Mark Center Drive
Mailbox 10
Alexandria, VA 22350-5000

Contract No.:
GS-35F-5833H

Federal Voting Assistance Program (FVAP)
Technology Projects

INVESTIGATION OF THE USE OF SOFTWARE ASSURANCE TOOLS ON INTERNET VOTING
SOFTWARE APPLICATIONS

CONTRACT # GS-35F-5833H

Task # 2.5.5

Final Report

16 May 2014

Read ad

Executive Summary
This report documents that existing software assurance (SA) tools provide a viable means of
identifying potential security and coding best practice weaknesses of existing internet voting
system vendors’ software. The report documents a successful, and verified, methodology for
conducting SA tool testing of voting system vendor software. The report also identifies
challenges encountered and identifies resolutions that led to successful testing.

Under the Uniformed and Overseas Citizens Absentee Voting Act (UOCAVA) of 1986, the
Federal Voting Assistance Program (FVAP) assists active duty uniformed service members, their
families, and United States citizens residing outside the United States (U.S.) in exercising their
right to vote by absentee ballot when they are away from their permanent address. In accordance
with the 2002 and 2005 National Defense Authorization Acts (NDAAs) and the 2009 Military
and Overseas Voters Empowerment (MOVE) Act, FVAP is investigating online voting support
tools that might assist UOCAVA voters to securely and accurately cast their votes in a timely
fashion. As part of this series of studies and analyses, FVAP is assessing supporting information
technology (IT) and system security infrastructures, and the specific benefits of software
assurance tools to document weaknesses in coding practices and overall election software
security.

This report presents a testing methodology and accompanying analysis on the viability and
effectiveness of five static analysis tools and two dynamic analysis tools in identifying
weaknesses in coding practices and security of internet voting system vendor software. The
tools and testing process examined system integrity and identified potential defects and
weaknesses associated with election software source code from the three Election Assistance
Commission (EAC)-registered internet voting system vendors. Additionally, this effort was
intended to test the hypothesis that the use of suites of tools (as opposed to an individual tool)
results in greater software security and reliability by significantly increasing the detection rate of
actual coding weaknesses and defects (True Positives). A secondary goal was to examine the
potential for optimizing SA tools through rules-based filtering of False Positives,i resulting in
reduced time and effort reviewers and testers spend on labor intensive manual code reviews.

While this effort was not intended to assess, nor draw any opinions or conclusions on the
security posture of the voting systems, all vendors were identified to possess defects in their
source code.

i A False Positive is a result that is reported/identified as a defect when in fact it is not.

ii

This report describes:

• The project’s background, including the development, and subsequent modification of the
toolbox of analysis tools;

• The protocol and methodology used to test the vendor software by the analysis tools and
a discussion of tool optimization;

• The results of the testing conducted against the three vendors’ source code, by tool, and
an analysis of the results; and

• The validation of the protocol, methodology, and results by Pro V&V, a National
Institute of Standards and Technology (NIST)-certified, EAC-registered test laboratory.

The following are conclusions based on the testing effort and the analysis of the test results for
this project:

• If using commercial SA tools, it is imperative to understand the programming
language(s) and other technical details utilized by the voting system vendors prior to tool
acquisition.

• Using multiple static code analysis tools increased the number of potential defects
identified in the source code for all severity ratings (High, Medium, and Low).

• However, if one considers the use of HP Fortify as the primary static analysis tool, the
additional tools utilized for this analysis did not increase the number of True Positive
High severity defects identified.

• For the C# and Java coding languages, HP Fortify identified the vast majority of potential
defects. The open source tools used were of marginal value.

• Of the tools that were utilized for this analysis, the commercial tools (HP Fortify and
Coverity) provided varying levels of customization/optimization that the open source
tools often did not.

• Customizing static analysis tools to reduce/eliminate False Positives can be done in the
development phase of coding (in the Integrated Development Environment or IDE);
however when the tools are used for the current type of analysis, post development, all
defects must be examined to determine a True/False Positive finding.

Having proven the viability and utility of SA tools in testing voting system vendor software,
CALIBRE presents recommendations for either additional research with regard to the use of
software assurance tools, other areas of research and analysis that may be useful regarding
testing tools, and/or additional security analysis of voting system vendors. Among the
recommendations are:

• Examine the use of multiple open source tools to provide the same level of analysis as a
single commercial tool.

• Compare and contrast dynamic scanners on operational systems with known defects and
scan with dynamic toolkit.

iii

• Conduct a cost/benefit analysis of the use of automated tools versus manual code review
in the testing and certification process.

• Analyze incorporating the requirement for a toolkit of assurance tools as part of the
voting system testing and certification process in lieu of a complete line-by-line review of
code.

• Develop an overall, comprehensive toolkit balanced with commercial and open source
static and dynamic tools that can meet a wide variety of operational environments and
software coding languages.

iv

Table of Contents
Executive Summary .. ii
1 Introduction .. 1

1.1 Software Assurance .. 1
1.2 Purpose of this Report .. 1
1.3 Organization of this Report .. 3

2 Project Background .. 5
2.1 Software Assurance Tools .. 6

2.1.1 Static and Dynamic SA Tools ... 6
2.1.2 False Positives ... 8
2.1.3 Combining Multiple Tools .. 9
2.1.4 Previous Toolbox Development .. 9

2.2 Risks and Defects ... 9
2.2.1 Catalogs of Software Defects .. 9
2.2.2 Defect Risk Ratings .. 12

3 Testing Protocol/Methodology .. 13
3.1 Set-Up ... 13

3.1.1 Installation of Voting Systems .. 13
3.1.2 SA Tool Installation .. 14

3.2 Test Plan and Scanning .. 16
3.3 Assessment and Adjudication of True/False Positives ... 18
3.4 Tool Optimization .. 20
3.5 Installation and User Manuals .. 22
3.6 Pro V&V Validation ... 23

4 CALIBRE Results .. 24
4.1 Static Analysis Tool Results ... 24

4.1.1 HP Fortify Source Code Analyzer .. 25
4.1.2 Coverity ... 29
4.1.3 VisualCodeGrepper – VCG .. 31
4.1.4 RATS - Rough Auditing Tool for Security ... 32
4.1.5 Perl::Critic ... 34

4.2 Dynamic Test Results ... 35
4.2.1 WebInspect Test Results ... 36
4.2.2 App Detective Test Results ... 37

4.3 Analysis of Results ... 38
5 Pro V&V Validation Results .. 39
6 Conclusions and Recommendations .. 40
Appendix A: Vendor Questionnaire ... 43
Appendix B: Pro V&V Report .. 44

v

1 Introduction
Under the Uniformed and Overseas Citizens Absentee Voting Act (UOCAVA) of 1986, the
Federal Voting Assistance Program (FVAP) assists active duty uniformed service members, their
families, and United States citizens residing outside the United States (U.S.) in exercising their
right to vote by absentee ballot when they are away from their permanent address. In accordance
with the 2002 and 2005 National Defense Authorization Acts (NDAAs) and the 2009 Military
and Overseas Voters Empowerment (MOVE) Act, FVAP is investigating online voting support
tools that might assist UOCAVA voters to securely and accurately cast their votes in a timely
fashion. As part of this series of studies and analyses, FVAP is assessing supporting information
technology (IT) and system security infrastructures, and the specific benefits of software
assurance (SA) tools to document weaknesses in coding practices and overall election software
security.

1.1 Software Assurance
Throughout the software development lifecycle (SDLC), SA tools identify defects, malicious
code, and/or other flaws that could bring harm to the end user, which, in the case of online voting
systems could influence election results. Currently, a multitude of commercial and open source
SA tools are available in the marketplace,2 and no single tool or application covers the entire
gamut of software assurance and defect assessment. In 2012, under Phase 1 of this contract,
CALIBRE conducted industry and market research to narrow the field of all available SA tools
to those most likely to meet the specific needs of federal entities, including FVAP, the U.S.
Election Assistance Commission (EAC), and the National Institute of Standards and Technology
(NIST). Additionally, SA tools were selected based on their ability to assess the three EAC-
registered internet voting system vendors. This previous effort resulted in a subset of 23 tools,
from which tailored SA toolkits were developed based on each voting system software under
examination.3 The purpose of the research presented in this report was to evaluate these
previously recommended SA tools to determine their effectiveness in identifying and mitigating
potential defects in the context of internet voting systems’ architectures deployed on the internet.

1.2 Purpose of this Report
The primary goal of this report is to provide a testing methodology and accompanying analysis
on the viability and effectiveness of SA tools in documenting weaknesses in coding practices and
security of internet voting system vendor software. This testing process examines system
integrity and identifies potential weaknesses and resulting defects associated with election

2 NIST SAMATE: National Institute for Standards and Technology Software Assurance Metrics and Tool
Evaluation. http://samate.nist.gov/Main_Page.html
3 FVAP. Assessment of Software Assurance Tools for Improving the Security of Voting Systems, 16 December
2012.

1

http://samate.nist.gov/Main_Page.html

software source code from the three EAC-registered internet voting system vendors.
Additionally, this effort was intended to test the hypothesis that the use of suites of tools (as
opposed to an individual tool) results in greater software security and reliability by significantly
increasing the detection rate of actual coding weaknesses and defects (True Positives). The
outcome of greater True Positive detection is increased confidence in the trustworthiness and
predictable execution of the application. A secondary goal is to examine the potential for
optimizing SA tools through rules-based filtering of False Positives,4 resulting in reduced time
and effort reviewers and testers spend on labor intensive manual code reviews.

Additionally, FVAP recognized that an evaluation of SA tools could be helpful to entities
beyond voting system manufacturers. For example, the EAC currently conducts an extensive
manual source code review as part of its certification procedures. It is likely that the use of a
suite of automated or semi-automated SA tools could create a more streamlined and cost-saving
certification process by allocating resources more efficiently and effectively while at the same
time improving effectiveness of the certification process for identifying true defects and
weaknesses. The EAC can benefit from the testing methodology documentation CALIBRE
created, which could serve as the baseline for a standardization process that uses SA tools in the
voting systems certification process.

The testing and validation of SA tool suites presented in this report provides FVAP with a
methodology for evaluating the quality of internet voting solutions during future
implementations of pilot programs and in the execution of the congressionally mandated voting
demonstration project. The intent of the testing was not to assess the weaknesses and defects of
specific voting systems, nor was it to provide a comprehensive security overview of such
systems. Rather, this project was designed to evaluate the usefulness of the specific SA tools in
the current web-based environments of the EAC-registered internet voting system vendors. As
such, the source code used for this testing came from systems currently available in the
marketplace. While the results of this methodology are not intended to provide a comprehensive
report on voting system SA, the findings are actionable and vendors could benefit from the
remediation of identified defects.

The SA tools used to test voting systems come at a great expense, making it generally unlikely
that the vendors will be afforded the identification of weaknesses these scans provide outside of
this project. If a testing program were made available as part of the EAC certification process,
vendors may again have access to this valuable information that could have a huge impact on
future elections – preventing system failures or contamination of voting data. If funding could
be pooled from a combination of federal, state, and vendor-based for-fee reimbursement, a
process could be established, whereby the vendors work with the Voting System Testing

4 A False Positive is a result that is reported/identified as a defect when in fact it is not.

2

Laboratories (VSTLs) to scan their software source code prior to and during the EAC
certification process. Greater tool availability would result in greater source code assuredness,
increased cost efficiencies in performing automatic and manual code reviews, and more
consistency in the development and application of standards applied to voting systems – an issue
identified as problematic in a previous FVAP study.

1.3 Organization of this Report
This final report summarizes a project consisting of multiple tasks, sequentially listed below by
applicable project work statement number.

• 2.5.1: Project Management Plan and Research Plan
o 2.5.1.1: Setup Phase:

 Access to source code and web application from three EAC-certified
internet voting system vendors (IVS)

 Setup and configuration of virtual hosting environment (VHE)
 Installation of IVS source codes and web applications on VHE
 Installation of software assurance tools (SATs) on VHE
 Setup and configuration of external communication channel with

subcontractor
o 2.5.1.2: Baseline Analysis of IVS Source Codes and Web Applications

• 2.5.2: Testing and Validation of SAT Suites
• 2.5.3: Handbook for Software Assurance Testing

Figure 1.1: Report Workflow. This report provides details as to why this research was conducted, how
it was set-up, findings, and the implication of results.

The full scope of this effort is intended to achieve five objectives, reflected in the following
report outline, and illustrated in the workflow in Figure 1.1:

Chapter 2 Provide background information on software assurance, associated tools, software
defects, corresponding catalogs, and risk ratings.

Chapter 3 Provide testing protocol and methodology, including tool and election software
installation, baseline scans, tool modifications, third party methodology validation
and user manual development.

3

Chapter 4 Provide in-house testing and third party validation results.

Chapter 5 Provide in-depth analysis of results aiming at the most efficient use of the
proposed suite of tools, for each vendor.

Chapter 6 Provide conclusions and recommendations for next steps (e.g., additional research
with regard to the use of multiple SA tools or additional security analysis of
internet voting software).

4

2 Project Background
Under Phase 1 of the current contract, CALIBRE conducted in-depth research and developed
reports on information assurance tools, specifically, SA tools, intrusion detection systems, and
intrusion recovery systems, for potential application in the testing of internet voting systems in
support of a potential internet voting demonstration or pilot project deployment. The first of the
reports, Assessment of Software Assurance Tools for Improving the Security of Voting Systems,
provided a thorough and comprehensive analysis of SA tools.

The analysis provided detailed information about SA tools available in the marketplace and
developed a methodology for assessing their usefulness for FVAP’s purpose. The report
proposed a recommended toolbox of 23 tools that could be used for testing the three internet
voting systems currently certified by the EAC. A tailored suite of five to six software assurance
tools was developed for each voting system depending on their programming languages and
operational environment. Each tailored suite consisted of three or four static code analysis tools,
a dynamic analysis tool, and a database analysis tool. The rationale for the use of several static
code analysis tools derives from research done by the National Security Agency (NSA) Center
for Assured Software (CAS).5 CAS has developed a methodology for the performance
assessment of static analysis tools and performed testing with static analysis tools on code bases
in several programming languages.6 As discussed in the Static Analysis Tool Study Methodology
report, the detection percentage of True Positive defects increased as additional tools were
combined; however, this increase in detection efficiency plateaued once the combination of tools
was greater than three. Based on these findings, a minimum of three static code analysis tools
were selected for each suite used to test the EAC-registered election software.

The current effort outlined in this report examines the effectiveness of the tailored suite of tools
against the code and application of three EAC-registered internet voting systems and the ability
to optimize the tools in order to automatically reduce the number of False Positives detected
during scans. This effort is not intended to assess, nor draw any opinions or conclusions, on the
security posture of the voting systems. The remainder of this section provides background
information on software assurance tools, associated tools, glossary, and election software tested
during the project.

5 National Security Agency, Center for Assured Software. 2011. CAS Static Analysis Tool Study – Methodology.
http://samate.nist.gov/docs/CAS%202011%20Static%20Analysis%20Tool%20Study%20Methodology.pdf
6 National Security Agency, Center for Assured Software. 2012. SATE IV Workshop March 29, 2012 - Sticking to
the Facts II: Scientific Study of Static Analysis Tools.
http://samate.nist.gov/docs/SATE4/SATE%20IV%206%20Stick%20to%20Facts%20II%20Erno.pdf

5

http://samate.nist.gov/docs/CAS%202011%20Static%20Analysis%20Tool%20Study%20Methodology.pdf
http://samate.nist.gov/docs/SATE4/SATE%20IV%206%20Stick%20to%20Facts%20II%20Erno.pdf

2.1 Software Assurance Tools
The NIST Software Assurance Metrics And Tool Evaluation (SAMATE) project defines
software assurance as the planned and systematic set of activities that ensure that software
processes conform to requirements, standards, and procedures to help achieve:7

• Trustworthiness – minimize exploitable defects, either of malicious or unintended origin,
thereby enhancing the security of the software.

• Predictable execution – promotes confidence that software reliably functions as intended
by eliminating coding flaws and weaknesses.

Software assurance activities include both processes (e.g., manual code review) and automated
tools that constitute a critical portion of the SDLC to produce reliable software, as shown in
Figure 2.1.

Figure 2.1: Software Development Lifecycle. Once initial requirements are defined, coding, testing &
defect mitigation, and optimization are essential to the process of determining an accepted solution.

The amount of user effort required to apply SA tools varies significantly within a broad range of
automated, semi-automated, or manual interfaces and inputs, and whether they are commercial
products or open-source projects. Nevertheless, in each case, their purpose is to test for flaws
within the software coding environment. SA tools are categorized and evaluated based on their
analysis, methodology, and purpose.

Ultimately, no software is flawless but the proper application of SA analysis will help to identify
defects and errors in code, and minimize or help mitigate known defects and weaknesses while
delivering an acceptable level of risk conducive to the system deployment.

2.1.1 Static and Dynamic SA Tools
Software assurance involves the use of static analysis tools to perform code review and dynamic
analysis tools to identify and/or exploit defects in operational applications and databases. NIST

7 NIST. Software Assurance Metrics and Tool Evaluation. http://samate.nist.gov/Main_Page.html

6

http://samate.nist.gov/Main_Page.html

defines static analysis as the examination of software code to determine its quality and the
potential need for remediation or mitigation. It also states that dynamic analysis is used to
examine the behavior of software in operation.8 This NIST research involved the evaluation of
both static and dynamic analysis tools to provide a holistic assessment of tool effectiveness.
Below, static and dynamic analyses are described in further detail.

Static: Static analysis is conducted on code at rest, not in a run-time environment. The code is
not executed or run but the SA tool itself is executed, and the source code is the input data to the
tool. Static analysis tests software for code patterns that violate defined coding best practices,
revealing defects, bugs, weaknesses, and security flaws. In addition to ensuring that code meets
uniform expectations for regulatory compliance or internal initiatives, static analysis also helps
to prevent defects such as resource/memory leaks, performance and security issues (e.g. buffer
overruns), logical errors (e.g. misuse of negative integers), and application programming
interface (API) misuse. Static analysis tools are generally used by developers to evaluate source
code in the development and component testing processes.

Most static analysis tools can be integrated within a developer’s respective Integrated
Development Environment (IDE) to be used during development, increasing the potential of
detecting and mitigating defects earlier in the SDLC. Static analysis tools may be utilized as
soon as software code can be compiled; they do not require the program to be complete.

The following are features or characteristics of static analysis tools:

• Calculation of metrics such as cyclomatic complexity or nesting levels (which can help to
identify where more testing may be needed due to increased risk).

• Enforcement of coding standards.
• Analysis of structures and dependencies.
• Help in code understanding.
• Identification of anomalies or defects in the code.

Static code analysis is valuable because it involves objectively exposing potential defects. It is
important to note that static analysis tools have significant limitations. Like many other tools,
static analysis cannot aid in identifying architectural-level flaws – the tools cannot detect when a
system performs unexpected operations and is therefore functionally unreliable. In addition,
these tools require the source code of the application be available for compiling. For the purpose
of this effort, the vendors provided access to the source code of their otherwise proprietary
software.

8 NIST. Source Code Security Analysis Tool Functional Specification Version 1.1. NIST Special Publication 500-
268 v1.1. February 2011. http://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-268_v1.1.pdf

7

http://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-268_v1.1.pdf

Dynamic: Dynamic analysis occurs when software is operating in a real or virtual operational
environment. Unlike its static counterpart, dynamic analysis does not test at the code level, and
instead attempts to detect and exploit defects or flaws by performing simulated attacks (e.g.,
injection or cookie testing). Through automation, dynamic analysis tools search for a range of
defects including input/output validation, configuration errors, and application issues. This
allows for organizations to detect defects in released software in ways similar to malicious
attackers – by performing actual attacks against a running application based on known defects.
While static analysis identifies specific lines of code with potential weaknesses and defects,
dynamic analysis attempts to exploit the existing defects.

Dynamic analysis tools are used after development, and, unlike static tools, require complete
systems to perform their tests. The dynamic analysis tools use test and evaluation scenarios on a
program executing data in real-time, with the goal of identifying security defects while the
application is running. Dynamic analysis tools often require an understanding of the
application’s build process and its composition in order to best identify False Positives. In most
environments, the primary drawback associated with dynamic analysis is the high level of
expertise required to discern False Positives.

Dynamic analysis is a critical component of any overarching security posture for potential
internet voting demonstration projects, as critical defects in the software may only surface during
dynamic testing. However, dynamic analysis tools are not tailored to a specific system, but are
designed to run through a particular set of tests. Unlike static analysis, dynamic analysis does
not look at source code and, therefore, does not examine coding errors that could have been
added by malicious individuals.

2.1.2 False Positives
Because static code analysis tools are designed to look for patterns, they often fail to see the
larger picture, and may report inaccurate or unexpected results. False Positives occur when
automated tools identify defects that are ultimately deemed not defective code. When scanning a
system, static analysis tools identify defects that they deem security issues or code weaknesses.
The reviewer must assess the identified defect against the source code to determine whether it is
a True or a False Positive (i.e., if the defect actually exists or if the tool is identifying a defect
that is not truly present in the source code).

The value of tools can be rapidly diminished by too many False Positives – in theory, the more
customizable a tool is, the easier it is to filter out False Positives, thus allowing development
teams to focus their efforts on code with actual defects. Therefore, one of the original goals of
this research was to assess baseline rates of False Positives returned by the SA tools, and to
ascertain how easily the tools could be customized to filter out False Positives.

8

2.1.3 Combining Multiple Tools
A single SA tool may only detect a portion of the potential defects present in the source code,
and likely does not provide a comprehensive security approach. The combination of multiple SA
tools with differing capabilities, in conjunction with manual reviews by skilled software testers,
can provide a more comprehensive security review of software and increase the detection of True
Positives. Recent research supports this model – as mentioned earlier, the NSA CAS issued a
2011 report concluding that the combination of multiple static SA tools could significantly
increase the detection rate of True Positives during testing.9 However, this study used artificial
test cases (source code intentionally injected with a known number of defects) instead of natural
code (production source code from a commercially available application). The findings of the
NSA study, therefore, do not reflect the reality of commercially available election software. The
current research assesses the impact of combining multiple tools against the production source
code from each of the three EAC-registered voting system vendors.

2.1.4 Previous Toolbox Development
As part of FVAP’s 2012 industry and market research to narrow the field of available SA tools,
23 tools were selected as the most potentially useful in the examination of vendor software.
These 23 tools included both static and dynamic analysis tools. This toolbox was then narrowed
to the five to six tools most appropriate for each voting system vendor.10 Figure 2.2 contains the
initial toolbox CALIBRE formulated for this project, which includes the SA tools chosen based
on an initial understanding of the vendor software.

Tool Type Tool Name
Data Base Scanner AppDetective Pro 7.X
Source Code Security Analyzer DMS Software Re-Engineering Toolkit
Source Code Security Analyzer HP Fortify SCA
Source Code Security Analyzer Parasoft C/C++test, Jtest
Source Code Security Analyzer Coverity
Web Application Scanner HP WebInspect
Figure 2.2: Original Toolbox. CALIBRE previously recommended a toolbox based on our initial
knowledge of vendor software and SA tool capability.

2.2 Risks and Defects

2.2.1 Catalogs of Software Defects
The IT security industry has experienced challenges in relation to the categorization of various
defects and their resulting risks. Modern security ecosystems use varying and often incompatible

9 National Security Agency, Center for Assured Software. 2011. CAS Static Analysis Study – Methodology.
http://samate.nist.gov/docs/CAS%202011%20Static%20Analysis%20Tool%20Study%20Methodology.pdf
10 FVAP. Assessment of Software Assurance Tools for Improving the Security of Voting Systems, 16 December
2012.

9

http://samate.nist.gov/docs/CAS%202011%20Static%20Analysis%20Tool%20Study%20Methodology.pdf

organizations, vendors, and security practitioners to detect, manage, and control threats in an
ever-changing environment. In this complex environment, several taxonomies currently exist as
industry standards for the identification and categorization of risks and defects. In order to
evaluate and compare the effectiveness of multiple SA tools, the research team chose to use
several common defect taxonomies to simplify and present results in this report.

CWE: The Common Weakness Enumeration (CWE) provides a unified and measurable catalog
of over 900 software defects to serve as a common language for describing software security
weaknesses in the operational system and source code.11 The list is created from the input of
security researchers all over the world and maintained by Mitre Corporation (Mitre). By creating
a better understanding of architectural and design weakness, the project aims to assist SA tools in
their identification, mitigation, and prevention efforts. However, the CWE is very detailed in its
description of the weakness, and does not provide a rank order of most critical defects.

SANS Top 25: The SANS Top 25 Most Dangerous Programming/Software Errors is a ranking
of the most widespread and critical errors that can lead to serious defects in software.12 The
annual list is the result of collaboration between the SANS Institute, Mitre, and many top
software security experts in the U.S. and Europe. The SANS Top 25 list presents detailed
descriptions of the top 25 programming errors along with authoritative guidance for mitigation
and avoidance. The SANS Top 25 listing correlates exactly with the numbering and
classification in the more detailed CWEs, but also provides a ranking scale of these defects.
However, no new listing has been released since 2011.

OWASP Top Ten: The Open Web Application Security Project (OWASP) is an open-source
web application security project that is emerging as a standards body for the field.13 Every three
years OWASP releases its list of the Top 10 most critical web defects, representing a broad
consensus of the most critical web application security risks. Figure 2.3 depicts both the 2010
and 2013 OWASP rankings, which shows that over time many of the most threatening defects
remain ranked at the top. The goal of the Top 10 project is to raise awareness about application
security by identifying some of the most critical risks facing organizations. The Top 10 project
is referenced by many standards, books, tools, and organizations, including the Defense
Information Systems Agency (DISA), Mitre, the Payment Card Industry Data Security Standard
(PCI DSS), and the Federal Trade Commission (FTC).

11 Mitre Corporation. Common Weakness Enumeration: A Community-Developed Dictionary of Software
Weakness Types. CWE Version 2.6. February 19, 2014. http://cwe.mitre.org/data/published/cwe_v2.6.pdf
12 SANS Institute. CWE/SANS Top 25 Most Dangerous Software Errors, Version 3. June 27, 2011.
http://www.sans.org/top25-software-errors/
13 OWASP Foundation. 2013 Top 10 List. June 23, 2013. https://www.owasp.org/index.php/Top_10_2013-Top_10

10

http://en.wikipedia.org/wiki/Web_application_security
http://cwe.mitre.org/data/published/cwe_v2.6.pdf
http://www.sans.org/top25-software-errors/
https://www.owasp.org/index.php/Top_10_2013-Top_10

Figure 2.3: OWASP Rankings - 2010 and 2013. Every three years, OWASP releases new defect
rankings to raise awareness about software security by identifying the 10 most critical risks.

Coding Best Practices: In addition to identifying the most dangerous defects and programming
errors, evaluations of software code often consider industry best practices as part of a complete
review. Violations of these practices do not necessarily lead to defects, but SA tools often flag
issues because they make code more susceptible to attacks or errors. Two of the leading industry
best practices for secure coding are the Department of Homeland Security’s (DHS) U.S.
Computer Emergency Readiness Team’s (U.S. CERT) Build Security In (BSI),14 and the
Software Engineering Institute CERT Division’s Secure Coding Standards for commonly used
programming languages (e.g., C, C++, Java, and Perl).15

BSI is intended for use by software developers and software development organizations who
want information and practical guidance on how to produce secure and reliable software. BSI
content is based on the principle that software security is fundamentally a software engineering
problem and must be addressed in a systematic way throughout SDLC. BSI contains a broad
range of information about best practices, tools, guidelines, rules, principles, and other
knowledge to help organizations build secure and reliable software.

The CERT Secure Coding Standards itemize those coding errors that are the root causes of
software defects and prioritizes them by severity, likelihood of exploitation, and remediation
costs. Each guideline provides examples of insecure code as well as secure, alternative
implementations. If uniformly applied, these guidelines eliminate critical coding errors that lead
to buffer overflows, format string defects, integer overflow, and other common software defects.

14 For more information: https://buildsecurityin.us-cert.gov/
15 For more information: https://www.cert.org/secure-coding/

11

https://buildsecurityin.us-cert.gov/
https://www.cert.org/secure-coding/

2.2.2 Defect Risk Ratings
It addition to categorizing security risks and defects in diverse ways, security tools often use
multiple and differing scales to present the potential risk of discovered defects. As shown in
Figure 2.4, below, for the SA tools evaluated for this report, two tools use a Low, Medium, High
severity scale, three tools use a larger scale that incorporates Critical, and one tool presents a list
of lowest to highest priority issues without assigning categories. Figure 2.4 indicates which
levels of classification are present for the given SA tool to provide a more detailed understanding
of their differences in severity ratings.

 SA Tool Critical High Medium Standard Low
HP Fortify X X X X
Coverity X X X
VCG X X X X X
RATS for Perl X X X
Perl::Critic*
HP WebInspect X X X X
Note: VCG had 2 additional categories: Suspicious Comments and Potentially Unsafe
Note: HP WebInspect had 2 additional categories: Informational and Best Practice
*Perl::Critic has five severity rankings, Severity 1 (lowest) through Severity 5 (highest)

Figure 2.4: SA Tools Defect Scale. Due to the differences in severity categories the SA tools present,
CALIBRE elected to re-assess all classifications into a High, Medium, Low scale to more easily compare
findings across tools.

In order to compare results across these different tools, the research team chose to use a single,
three-value (Low, Medium, and High) Likert-type scale. This scale collapsed Critical issues into
the High category, and assigned a category based on CWE and OWASP criteria to those tool
results which presented an uncategorized list.

12

3 Testing Protocol/Methodology
To conduct this research, FVAP and the CALIBRE research team worked cooperatively with the
three EAC-registered internet voting system vendors. It is important to note that there was no
requirement or monetary incentive for vendor participation – the three vendors voluntarily shared
their source code and provided developmental and operational virtual machines (VMs) as a
testing environment for the SA tools, and in return, received valuable information on risks and
defects detected by the tools.

This chapter outlines the general process for the installation of the election software and SA
tools, the baseline scans, the subsequent modifications of the SA tools, and the final third-party
validation of the results and methodology. Each section contains a summary of difficulties
encountered, steps taken to remedy the issue(s), and/or key lessons learned. Lastly, this chapter
contains a brief description of the Installation and User’s Manual developed for each tool with
each vendor’s software.

3.1 Set-Up

3.1.1 Installation of Voting Systems
The research team requested two VMs from each voting system vendor; one containing the
source code and compiler, and a second holding their operational system. After the secure
transfer of the VMs, the research team uploaded and activated them on CALIBRE’s secure
internal network.

This method of environmental set-up was chosen due to several advantages:

• Security: VMs provided security for the proprietary source code and applications to be
tested; authentication and access were logged and audited, and there was a mechanism for
disaster recovery.

• Accurate Representation: Using the vendors’ VMs enabled testing using source code,
applications, and environments free of configuration issues.

• Resource Utilization: Multiple VMs could co-exist on the same host computer, in
strong isolation from each other, providing improved availability for the research team,
and easier maintenance and management due to the use of fewer servers.

Initial installation of the vendors’ systems required frequent and extensive dialog with vendor
technical representatives. Set-up took less time for vendors that provided instructions and
detailed information, and more time for vendors who simply sent VMs with no associated
documentation. The VMs provided by the vendors varied in their presentation; while one vendor
sent a combined operational and developmental VM, another vendor provided a development
machine and instructions on set-up, thereby requiring the research team to configure the
machine. Therefore, set-up timelines ranged from two weeks to two months, with the
availability of vendor representatives being a key factor to prompt set-up. Figure 3.1 shows a
high-level depiction of the network set-up CALIBRE and Pro V&V utilized.

13

Figure 3.1: Virtual Private Networks. Vendors provided their operational and developmental VMs,
which were installed on CALIBRE and Pro V&V’s machines.

Key lessons learned for future efforts include:

• Use a detailed checklist prior to the effort to ensure accurate understanding of each
system’s technical details (e.g., source language, operating system, database, web server,
etc.). A sample checklist has been developed and can be found in Appendix A.

• Ensure a single technical point of contact from each voting system vendor, who
understands what the voting system vendor provided, is knowledgeable regarding the
system specifics, and is available to answer questions within a reasonable timeframe.

• Require vendors to provide separate VMs for the development and operational
environments, and complete documentation of what is on each VM and instructions on
how to compile their code.

• Require vendors to provide detailed directions for VM set-up, including all required
components and any required user IDs or passwords necessary for the operational and
developmental systems.

3.1.2 SA Tool Installation
The SA tools used in this project evolved as the project progressed. The initially identified tools
discussed in section 2.1.4 served as the starting point for building a toolbox of five or six tools

14

(three or four of which are static analysis tools) tailored to each vendor’s software. This initial
set of tools was based on the extensive research done on the tools for the Assessment of Software
Assurance Tools for Improving the Security of Voting Systems report and the information
provided by the voting system vendors regarding the source code language used by their
respective systems. Based on the initial toolbox, CALIBRE purchased all applicable tool
licenses16 and downloaded instructions and keys from the tool manufacturer. The team then
followed step-by-step installation instructions or guides provided by each tool manufacturer to
install the tools on its scanning VM.

As the research team prepared to begin the baseline scans, several issues with the tool suites
were discovered, despite a thorough preliminary vetting process. As detailed below, CALIBRE
received incorrect information from both voting software and SA tool manufacturers and faced
numerous challenges negotiating with the latter for issue resolution. As a result, with the
approval of FVAP, some of the SA tools in the original toolbox were replaced in order to
maintain the previously agreed toolbox format of three static code analyzers, one database
scanner, and one web application scanner for each tested internet voting system:

• One of the tools selected to test the PERL programming language, Design Maintenance
System (DMS), did not provide a defect assessment. Because DMS is one of the few
commercially available scanners for PERL, CALIBRE, with FVAP approval, selected
two open source products as replacements: Rough Auditing Tool for Security (RATS)
and Perl::Critic.

• Parasoft C\C++ test was purchased with the intent of using the tool to scan the code of
two voting system vendors and was based on information provided by these vendors;
however, when the vendors’ source code was received and initially tested, none of it was
compatible with the Parasoft tool – the code was written in Java. CALIBRE attempted to
negotiate with Parasoft to change the C++ tool/license for a Java scanning tool license.
Parasoft was unwilling to switch CALIBRE’s license. After much negotiation Parasoft
relented and we were able to exchange the C/C++ license for a Jtest license. Even after
acquiring the Parasoft tool in the correct language we were unable to get the two vendors’
code to work with Parasoft. One vendor’s code required an additional plug-in, and due to
security concerns on their part, they were unwilling to supply the plug-in. Likewise, due
to a compiling issue, we were unable to successfully use Jtest with the second vendor’s
code.

The final set of tools used for this analysis consisted of:

• Source Code Static Analysis Tools
o HP Fortify

16 CALIBRE was able to negotiate three thirty-day licenses for HP Fortify, rather than purchase a full year license.

15

o Coverity
o VCG
o RATS for PERL
o Perl::Critic

• Dynamic Analysis Tools
o HP WebInspect (Web Application Scanner)
o App Detective (Database Scanner)

Tool installation was generally straightforward, although the open source tools provided little
documentation and instructions, and thus took longer to install. Figure 3.2 documents issues
with tool installations.

SA Tool Issue
App Detective • Would frequently fail to install, requiring a new computer each time.
HP WebInspect • No issues with installation.
HP Fortify • No issues with installation.
Coverity • No issues with installation.
Parasoft • No issues with installation.
VCG • Took longer to install due to lack of documentation.
RATS for PERL • Took longer to install due to lack of documentation.
Perl::Critic • Took longer to install due to lack of documentation.
Figure 3.2: Installation Issues by SA Tool. The majority of SA tools were installed on the VMs without
incident, though there was greater difficulty doing so with open-source tools.

3.2 Test Plan and Scanning
The original test plan CALIBRE developed was based on the assumption that the SA tools would
not be difficult to modify and/or customize to filter out False Positives from the final results.
The plan consisted of the following steps:

• Conduct baseline scan using SA tool’s default (i.e., out-of-the box) configuration on each
internet voting system source code.

• Send baseline scan test results to internet voting system vendors for review/assessment;
vendors to focus assessment on classifying Critical/High defects found by static tools as
True or False Positive.

• Review vendor False Positive assessment and make final determination of True or False
Positive.

• Modify/customize static tools to filter/eliminate False Positives.
• Re-run static tools resulting in an optimized scan.
• Analyze optimized test results against baseline to assess effectiveness of tool

modification/customization.

Based on the findings discussed in section 3.3, and the recognition that there was no change to
the actual code following True/False Positive assessment, the test plan was modified, and
approved by FVAP, as follows:

16

• Conduct scan with minor modifications to SA tool’s default configuration.
• Send baseline scan test results to internet voting system vendors for review/assessment;

vendors to focus assessment on classifying Critical/High defects found by static tools as
True or False Positive.

• Review vendor False Positive assessment and make final determination of True or False
Positive.

The research team conducted a scan for each voting system vendor/tool combination using the
default configuration provided by the SA tool manufacturer. The research team did not utilize
any customization options offered by the tools (e.g., settings to turn various audits on or off),
with one exception – where tools allowed it, the research team specified the most intense
possible scan of the code.

Overall, the scans were conducted without major issues; however, several vendor-specific
problems occurred while conducting these scans, as detailed in Figure 3.3.

SA Tool Issue

App Detective • Required high-level administrative access to scan the database – without such
access, or with a low-privileged account, the tool would not function.

HP WebInspect • Scans took much longer than other tools (almost a day versus approximately 15
minutes) due to number of tests and iterations performed.

HP Fortify

• Despite having a plug-in for Microsoft Visual Studio, HP Fortify failed to
conduct scan of a vendor’s code initially.
o Running HP Fortify via command line did not fix this issue.
o The only work-around, provided by HP Support, was to pre-compile the

Visual Studio code and point HP Fortify to the compiled results for scanning.

Coverity

• In order to use Coverity with a vendor’s compiler, an extra flag/command was
necessary, making Coverity somewhat more complicated to use for this system.

• Coverity required added memory (2500 MB) beyond the 1024MB default setting
to scan a vendor’s code.

• Vendor 3 didn’t provide us with compiling instructions so it couldn’t run.

Parasoft

• Parasoft Jtest is designed for systems that compile with Eclipse. One vendor
uses a different compiler, thus Parasoft Jtest could not scan the vendor’s code
due to its external repository settings and the need for a security plug-in, which
the vendor was unwilling to supply for security reasons.

• A second vendor did not provide compiling instructions and thus we were unable
to utilize Parasoft on their software.

VCG • No issues.

RATS for PERL • No issues; Comment - RATS for PERL is a command-line tool, which is less
user-friendly than other tools with graphical user interfaces.

Perl::Critic • No issues; Comment - Perl::Critic is also a command-line tool.
Figure 3.3: Baseline Scan Issues by SA Tool. Both the dynamic tools ran into issues across all vendors,
while the static tools – with the exception of the open source tools – generally had issues with specific
vendor software.

17

3.3 Assessment and Adjudication of True/False Positives
After the scans were conducted, all tool reports were converted to readable formats and provided
to the internet voting system vendors for True/False Positive assessment, as well as for their own
situation awareness, as described in Figure 3.4.

Figure 3.4: Adjudication Process for True/False Positives Defects. To conduct False Positive
adjudication, the research team provided the vendor with baseline scan results. If the vendor indicated a
False Positive, CALIBRE manually checked the source code against the information provided by the
vendor.

It should be noted that while both static and dynamic test results were provided to the voting
system vendors, CALIBRE only requested that the results of the static tools be assessed, as
dynamic results are much more difficult to analyze, as discussed in section 2.1.1. The numbers
of identified defects varied widely by voting system – with aggregate results from the three static
code tools reporting over 1,300 High, Medium, and Low defects for one vendor, over 3,600 for
another, and over 2,600 for the third. It should be noted that the defects identified included both
security related issues and coding best practice issues.

Although the research team asked vendors to assess all results to identify False Positives, if
vendors did not have resources to evaluate all identified defects, they were asked to focus on
those categorized as Critical/High by the tools.

The False Positive identification and adjudication process required extensive and continuous
dialog with the voting system vendors, and thus heavily depended on vendor cooperation. As
vendors volunteered their code for testing, CALIBRE did not require a set process for True/False
Positive assessment. This resulted in divergent levels of detail and feedback received from the
vendors, as shown in the way each vendor conducted its assessment:

18

• One vendor looked at all reported defects regardless of severity level, and provided
detailed feedback and evidence to the research team regarding False Positive
assessments.

• A second vendor evaluated a random sample of the Critical and High defects in every
reported category. When the random sampling revealed that all defects by category and
tool were True Positives, this vendor classified all such defects as True Positives.

• The third vendor examined one defect per issue category (as identified by the scanning
tool) before generalizing those results to the broader category. In addition their responses
were vague (e.g., “This is a theoretical problem which arises based on how you use the
JS. It would be good if the tool examined the usage of JS and only reported real issues”).

However, the vendors usually followed the process described in Figure 3.5.

Figure 3.5: Process Used by Internet Voting System Vendors to Assess True/False Positives.
Vendors needed to provide sufficient evidence to justify a False Positive determination.

Following vendor assessment, the research team reviewed the documentation provided by the
vendors and independently, via manual code review or using tools such as memory profilers,
classified True and False Positives in the reports, as described in Figure 3.6.

19

Figure 3.6: CALIBRE’s Adjudication Process of Vendors’ Assessment. CALIBRE reviewed the
voting system vendors’ False Positive assessment and attempted to verify their findings using automated
tools or manual code review.

In all but one instance, CALIBRE agreed with the vendor’s assessment. The assessment and
adjudication process took approximately six weeks, on average, for each vendor.

Key lessons learned for future efforts include:

• Provide vendors detailed information regarding the True/False Positive assessment and
adjudication process early in communications, including timeframes for when they will
receive findings and requested dates by which to review and return their results. Build in
time for back and forth discussions regarding their False Positive assessments.

• Provide vendors with sample feedback which outlines the level of detail requested from
them for their False Positive assessment.

• Ensure a single technical point of contact from each system vendor, who is
knowledgeable regarding the True/False Positive assessment process, and available to
answer questions within a reasonable timeframe.

• Standardize SA tool output to the greatest extent possible before providing it to vendors,
and include a template for response that provides sample results and thorough and
complete example descriptions of False Positives feedback.

3.4 Tool Optimization
The SA tools utilized for this analysis provided for different approaches to modification or
customization of the tool, including: custom rules/rule sets, filtering/customization of files
scanned, scanning intensity settings, and suppression. These techniques are described in more

20

detail below and Figure 3.7 presents a table comparing the tools and techniques available in each
tool:

• Custom Rules/Rule Sets: The user can construct custom rules capable of searching the
source code for suspected coding issues or security defects, and eliminating issues. Two
tools, HP Fortify and VCG, allowed for the creation of custom rules. Coverity and
Parasoft allowed easy-to-use on/off options for various pre-defined rule sets making
customization more user-friendly. It should be noted that little professional literature
exists for the creation of custom rules with HP Fortify. And although HP Fortify
provided the research team with a one-day training session for creating custom rules, the
instructor had considerable difficulty constructing useable custom rules with the vendor’s
source code.

• Filter/Customize Files Scanned: Source code sometimes contains notes or documents
that are not part of code execution. These portions of the code can produce False Positive
defects when scanned by automated SA tools. File filtering allows users to tag these files
to avoid False Positive defects. All six static analysis tools allowed for file
filtering/customization, although the research team did not use this customization option
because all files sent by the vendors were executable and therefore did not need to be
filtered out of the scanning process.

• Scanning Intensity: SA tools are typically set to scan the code a set number of times.
However, five tools (two dynamic; three static) allowed this number to be altered,
potentially increasing the intensity of the scan to locate more issues. The default setting
on the tools was usually Medium, but the research team increased scan intensity to the
maximum allowed (High) for all tools where this was an option, in order to allow for the
most intensive scanning allowed by each tool.

• Suppression: Suppression can be used to help fine tune scan results and keep displayed
warnings relevant, by suppressing warnings for specific types of issues that might not be
high priority or of immediate concern. The user may elect to suppress issues labeled as
Low in priority to focus attention on issues of greater significance. Suppression alters the
visibility of defects in produced reports, enabling users to quickly change the sorting and
visibility of issues. Five tools (two dynamic; three static) allowed for suppression.

21

SA Tool Custom Rules Filter Files Scanning
Intensity Suppression

App Detective N/A N/A X X
HP WebInspect N/A N/A X X
HP Fortify X X X
Coverity X X X X
Parasoft X X X
VCG X
RATS for PERL X X
Perl::Critic X X
Figure 3.7: SA Tools’ Optimization Options. Each of the static tools provides different optimization
options, though many of these were not feasible.

As explained above, tool optimization options varied significantly across the SA toolboxes with
open source tools having fewer options to modify the scans or final reports. Commercially
available tools generally allowed for custom rules, filtering of files, changes to scan intensity,
and suppression/auditing of results. However, the research team discovered that optimization
beyond scan intensity and suppression/auditing generally required expert-level knowledge likely
beyond the level of most users. Although the researchers originally planned to use all
optimization options available for each tool, the team only used scan intensity, following training
by the tool manufacturer. Figure 3.8 documents issues with tool optimization and the team’s
actions for resolution.

SA Tool Issue
App Detective • No optimization issues.
HP WebInspect • No optimization issues.

HP Fortify • Allows for custom rules, however development of rules requires expert-level
knowledge.

Coverity • No optimization issues.
Parasoft • No optimization issues.
VCG • No suppression/auditing function for reports.
RATS for PERL • No suppression/auditing function for reports.
Perl::Critic • No suppression/auditing function for reports.
Figure 3.8: Optimization Issues by SA Tool. Open source tools required greater attention for
optimization, while the other tools generally did not run into issues, with the exception of HP Fortify.

3.5 Installation and User Manuals
All actions taken during the project were documented, including all changes made to the
configuration of the scanning tools for each of the three vendors. The research team’s
documentation was used to create a customized Installation & User’s Manual for each SA tool
for use with each of the three internet voting systems. The manuals are provided on a separate
disc accompanying this report.

Each user manual describes how to install the SA tool, how to conduct a scan, and how to
generate reports. These manuals were provided to, and validated by, Pro V&V.

22

3.6 Pro V&V Validation
Pro V&V, Inc., is a test laboratory located in Huntsville, Alabama. Pro V&V received its Voting
System Testing Accreditation from the NIST National Voluntary Laboratory Accreditation
Program (NVLAP) in 2012, and has been audited by the EAC, successfully meeting all
requirements for the EAC VSTL accreditation.

For this project, Pro V&V acted as an independent third party evaluator, taking all of the
installation and user documentation, scanning tools, source code and applications, and testing
results from the CALIBRE research team. The purpose of this evaluation was a validation of
findings and a verification of user manual documentation.

Pro V&V utilized documentation created by the CALIBRE research team to install and configure
each SA tool in a step-by-step manner. They then followed CALIBRE procedures for
identification and adjudication of False Positives, and validated the CALIBRE findings. At the
conclusion of this engagement, Pro V&V provided a test report detailing their findings and
recommending any additional configuration changes that would further optimize each software
assurance tool, as well as changes to the user manuals.

23

4 CALIBRE Results
Using the methodology described in Chapter 3, CALIBRE performed both static and dynamic
testing on the software code provided by the three participating vendors.

In order to secure participation of the voting system vendors for this effort, CALIBRE agreed to
not report the results based on the individual vendors. Therefore the test results are reported by
tool for all three vendors’ code. While this is an unusual method of reporting the results, the
major conclusions drawn from the testing would not change had the results been reported by
vendor. CALIBRE performed, but did not report on, a comparative analysis between each
vendor’s code with the three static tools, and the high level results are identical. As a result of
differing levels of attention and effort provided by vendors to adjudicate False Positives, the
analysis does produce differing results in terms of the True Positive rates, as described below by
tool.

4.1 Static Analysis Tool Results
Figure 4.1 presents the testing results of all five static analysis tools. For each tool the count of
the number of Low, Medium and High defects, along with the total, are displayed.

Figure 4.1: Test Results for All Static Analysis Tools. HP Fortify identified more defects than any
other static analysis tool.

HP Fortify, a commercial product which was used against all three voting system vendors,
identified more High defects, as well as more overall defects, than any of the other tools.
Coverity, also a commercial product, and VCG, an open source product, were used against two
voting system vendors, while, RATS and Perl::Critic, both open source tools, were used against
only one vendor. While Perl::Critic found the second most overall and High defects, the detail,

HP Fortify Coverity VCG RATS PerlCritic
High 1,511 66 30 30 680
Med 24 386 43 568 927
Low 3,129 70 189 13 0
Total 4,664 522 262 611 1,607

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

24

or lack of detail, provided in the Perl::Critic reports made the information of little value.
Additionally, 99% of the defects found were potential best coding practices defects.

Even though HP Fortify was the only tool used against all three vendors, when the test results are
viewed from a vendor perspective, HP Fortify found more total defects and more high defects
than the other two tools tested against each voting system vendor’s code. (Recall the test
protocol was to use three static analysis tools against each voting system vendor’s code.)

The test results for each tool are discussed in more detail in the following sections.

4.1.1 HP Fortify Source Code Analyzer
HP Fortify was used against the source code for all three internet voting system vendors. The
rating scale used by HP Fortify is: Critical, High, Medium, and Low. The Critical and High
defects were combined for comparison purposes, as discussed in Section 2.2.2.

Of the 4,664 defects identified by HP Fortify, 1,511 were classified as High, 24 as Medium, and
3,129 as Low.

Figure 4.2: Defects Detected by HP Fortify by Severity Rating. One third of defects detected by HP
Fortify were rated High, while two thirds of were rated Low.

After adjudication with the vendors, of the 1,511 defects classified as High, 68% (1,029) were
judged to be True Positives (TP), while 32% (482) were considered False Positives (FP), as
shown in Figure 4.3.

3,129
(67.1%)

24
(0.5%)

1,511
(32.4%)

Low Medium High

25

Figure 4.3: HP Fortify False Positive Adjudication Results. 68% of defects identified by HP Fortify
were adjudicated as True Positives by vendors.

As mentioned above, HP Fortify distinguishes between Critical and High defects in its reporting.
Figure 4.4 and Figure 4.5 provide a breakdown by Critical and High and the adjudicated True
Positive/False Positive findings.

Severity & Defect Category TP FP
Critical 82 48

Path Manipulation 41 2
Cross-Site Scripting: Persistent 21 7
Cross Site Scripting: DOM 8
Dynamic Code Evaluation: Code Injection 4
SQL Injection 4
Privacy Violation 2
Open Redirect 1 1
Password Management: Hardcoded Password 1 2
Privacy Violation (Privacy Violation) 28
Privacy Violation (Shared Sink) 8

Figure 4.4: Critical-Rated Defects Detected by HP Fortify. About two-thirds of the Critical-rated
defects HP Fortify detected were True Positives.

Among the Critical-rated defects detected by HP Fortify, 63% were assessed to be True
Positives. Of these 82 defects, 85% were associated with two categories, Path Manipulation and
Cross-Site Scripting. For these two categories, 89% of the detected instances were assessed to
be True Positives (70 of 79).

482
(31.9%)

1,029
(68.1%)

FP TP

26

Severity & Defect Category TP FP
High 947 434

Null Dereference 268 8
Privacy Violation: Heap Inspection 229
Unreleased Resource: Unmanaged Object 139 1
Log Forging 58
Insecure Randomness 42
Unreleased Resource: Streams 40 7
Path Manipulation 35 9
Privacy Violation: Heap Inspection(Shared Sink) 26
Code Correctness: Regular Expressions Denial of Service 20
Unsafe Native Invoke 16
Access Control: Database 14
Portability Flaw: File Separator 13 6
Password Management: Hardcoded Password 10 25
Header Manipulation: Cookies 6
Unreleased Resource: Database 6 22
Denial of Service 5
Weak Security Manager Check: Overridable Method 5
Value Shadowing 4
Command Injection 2
Missing XML Validation 2 1
Password Management: Password in Configuration File 2 38
Weak XML Schema: Unbounded Occurrences 2
ASP.NET Bad Practices: Non-Serializable Object Stored in Session 1
Privacy Violation 1 4
XPath Injection 1
Log Forging (Shared Sink) 234
Log Forging(Log Forging) 15
Often Misused: Authentication 2
Path Manipulation (Shared Sink) 2
Privacy Violation (Shared Sink) 60

Figure 4.5: High-Rated Defects Detected by HP Fortify. 69% of the High defects found by HP Fortify
were assessed as True Positives, more than half of which were within two defect categories.

Among the High-rated defects detected by HP Fortify, 69% were assessed to be True Positives.
Of these 947 defects, 52% were associated with two defect categories, Null Reference and
Privacy Violation: Heap Inspection. For these two categories, 98% of the detected instances
were assessed to be True Positives (497 of 505). The 10 defect categories with the largest
number of True Positives account for 92% of all the True Positives assessed. For these 10
categories, 97% of the detected instances were assessed to True Positives (873 of 898).

While the True Positive discussion and static analysis results stated above are accurate, the
reporting of the HP Fortify results in aggregate for the three vendors is distorted by the

27

assessments done by the vendors. As discussed in section 3.1.2, the vendors all took different
approaches, and levels of effort, to the assessment and adjudication process. The True
Positive/False Positive analysis for HP Fortify when viewed by vendor is much different. One
vendor assessed 10% of the HP Fortify High defects as True Positive; a second assessed 97% of
the defects as True Positive; and a third had 100% adjudicated as True Positive.

The top 10 defect categories, by number of detected instances, account for 89% of all True
Positive High-rated defects detected by HP Fortify (includes Critical-rated defects, as previously
discussed), as illustrated in Figure 4.7.

Figure 4.7: High-Rated True Positives Defects Detected by HP Fortify. The top five defect categories
– null dereference, privacy violation, unreleased resource, path manipulation, and log forcing – account
for 75% of the defects identified as True Positives by HP Fortify.

The Figure 4.6 identifies the defect categories and instances of the defects assessed to be True
Positives (both Critical- and High-rated), and a mapping of the defect categories to the
associated CWE, SANS Top 25, and OWASP Top 10.

Instances Defect Category CWE # SANS OWASP
268 Null Dereference 476
229 Privacy Violation: Heap Inspection 226
139 Unreleased Resource: Unmanaged Object 404
76 Path Manipulation 22, 73 6, 13 4
58 Log Forging 117

Null Dereference
26%

Privacy Violation:
Heap Inspection

22% Unreleased Resource:
Unmanaged Object

14%

Path Manipulation
7%

Log Forging
6%

Insecure Randomness
4%

Unreleased Resource
Streams 4%

Privacy Violation:
Heap Inspection

(Shared Sink) 3%

Cross-Site Scripting:
Persistent

2%

Code Correctness:
Regular Expressions
Denial of Service 2%

28

Instances Defect Category CWE # SANS OWASP
42 Insecure Randomness 330
40 Unreleased Resource: Streams 404
26 Privacy Violation: Heap Inspection(Shared Sink) 226
21 Cross-Site Scripting: Persistent 79, 80 4 3
20 Code Correctness: Regular Expressions Denial of Service 185, 730
16 Unsafe Native Invoke 111
14 Access Control: Database 566 1, 6 4
13 Portability Flaw: File Separator 474
11 Password Management: Hardcoded Password 259, 798 7, 25 2
6 Cross Site Scripting: DOM 79, 80 4 3
6 Header Manipulation: Cookies 113
6 Unreleased Resource: Database 404
5 Denial of Service 730
5 Weak Security Manager Check: Overridable Method 358
4 Dynamic Code Evaluation: Code Injection 95
4 SQL Injection 89 1 1
4 Value Shadowing
3 Privacy Violation 359
2 Command Injection 77, 78 2 1
2 Missing XML Validation 112
2 Password Management: Password in Configuration File 13, 260, 555 2, 5
2 Weak XML Schema: Unbounded Occurrences 400, 770

1
ASP.NET Bad Practices: Non-Serializable Object Stored
in Session 579

1 Open Redirect 601 22 10
1 XPath Injection 643

Figure 4.6: High-Rated True Positive Defects Detected by HP Fortify Sorted by Category and
Mapped to CWE, SANS Top 25, and OWASP Top 10. The top 10 most frequent True Positive defects
detected by HP Fortify and rated High represent 93.9% of all defects detected by the tool.

4.1.2 Coverity
Coverity was used against the source code for two of the three internet voting system vendors.
The rating scale used by Coverity is: High, Medium, and Low.

Of the 522 defects detected by Coverity, 66 were classified as High, 386 as Medium, and 70 as
Low, as illustrated in Figure 4.8.

29

Figure 4.8: Defects Detected by Coverity by Severity Rating. One eighth of all defects detected by
Coverity were rated High, while three quarters of those were rated Medium.

After adjudication with the vendors, of the 66 defects classified as High, 10.6% were judged to
be True Positives, as illustrated in Figure 4.9.

Figure 4.9: Coverity False Positive Adjudication Results. 10.6% of defects identified by Coverity were
assessed as True Positives.

While the True Positive discussion and static analysis results stated above are accurate, the
reporting of the Coverity results, like the HP Fortify results, in aggregate for the vendors is
distorted by the assessments done by the vendors. As discussed in section 3.1.2, the vendors all
took different approaches, and levels of effort, to the assessment and adjudication process. The
True Positive/False Positive analysis for Coverity when viewed by vendor is much different.
One vendor assessed 85% of the Coverity High defects as True Positives, while a second
assessed none of the defects as True Positives.

70
(13.4%)

386
(73.9%)

66
(12.6%)

Low Medium High

59
(89.4%)

7
(10.6%)

FP TP

30

All High-rated True Positive defects detected by Coverity were Resource Leaks and this defect
category is mapped to the associated CWE, SANS Top 25 and OWASP Top 10 in Figure 4.10.

Instances Defect Category CWE # SANS OWASP
7 Resource Leak 402 6

Figure 4.10 High-Rated True Positive Defects Detected by Coverity Sorted by Category and
Mapped to CWE, SANS Top 25, and OWASP Top 10. All True Positive defects detected by Coverity
were resource leaks.

4.1.3 VisualCodeGrepper – VCG
VCG, an open source static analysis tool, was used against the source code for two of the three
internet voting system vendors. The rating scale used by VCG is: High, Medium, and Low.

Of the 262 defects detected by VCG, 30 were classified as High, 43 as Medium, and 189 as Low,
as illustrated in Figure 4.11.

Figure 4.11: Defects Detected by VCG by Severity Rating. One eighth of all defects detected by VCG
were rated High, while nearly three quarters were rated Low.

After adjudication with the vendors, of the 30 defects identified as High, 6.7% (2) were judged to
be True Positives, as illustrated in Figure 4.12.

189
(72.1%)

43
(16.4%)

30
(11.5%)

Low Medium High

31

Figure 4.12: VCG False Positive Adjudication Results. 6.7% of defects identified by VCG were True
Positives.

Once again, while the True Positive discussion and static analysis results stated above are true,
the reporting of the VGC results in aggregate for the vendors is distorted by the assessments
done by the vendors. The True Positive/False Positive analysis for VCG when viewed by vendor
is much different. One vendor assessed 100% of the VCG High defects as True Positives; a
second assessed none of the defects as True Positives.

The 30 High-rated defects were classified in two categories, as shown in Figure 4.13.

Defect Category TP FP
SQL Injection 2
Poor Input Validation 28

Figure 4.13: High-Rated Defects Detected by VCG. The majority of all High-rated defects detected by
VCG were True Positives.

All High-rated True Positive defects detected by VCG were SQL Injections and this defect
category is mapped to the associated CWE, SANS Top 25, and OWASP Top 10 in Figure 4.14.

Instances Defect Category CWE # SANS OWASP
2 SQL Injection 89 1 1

Figure 4.14: High-Rated True Positive Defects Detected by VCG Sorted by Category and Mapped
to CWE, SANS Top 25, and OWASP Top 10. SQL Injection represents all True Positive defects
detected by VCG.

4.1.4 RATS - Rough Auditing Tool for Security
RATS, an open source SA tool, is a rough auditing tool for security, originally developed by
Secure Software Inc. It is a tool for scanning source code in multiple languages and flagging
common security related programming errors such as buffer overflows and TOCTOU (Time Of

28
(93.3%)

2
(6.7%)

FP TP

32

Check, Time Of Use) race conditions. As its name implies, the tool performs only a rough
analysis of source code, and will not find every error and will also find things that are not
errors.17

This tool was used against the source code for one internet voting vendor and its rating scale is:
High, Medium, and Low.

Of the 611 defects detected by RATS, 30 were classified as High, 568 as Medium, and 13 as
Low, as illustrated in Figure 4.15.

Figure 4.15: Defects Detected by RATS by Severity Rating. The majority of the defects detected by
RATS were rated Medium, with only 4.9% rated as High.

After adjudication with the vendors, of the 30 High-rated defects detected by RATS, all were
judged to be True Positives. This high rate of True Positives should not be taken as a reflection
on the quality of the tool, but is likely a result of the vendor assessment effort. (Refer to section
3.3 Assessment and Adjudication of True/False Positives.)

17 For more information: https://code.google.com/p/rough-auditing-tool-for-security/

13
(2.1%)

568
(93.0%)

30
(4.9%)

Low Medium High

33

https://code.google.com/p/rough-auditing-tool-for-security/

Figure 4.16: RATS False Positive Adjudication Results. 100% of defects identified by RATS were
adjudicated as True Positives.

All High-rated True Positive defects detected by RATS were classified in three categories
mapped to the associated CWE, SANS Top 25, and OWASP Top 10 in Figure 4.17.

Instances Defect Category CWE # SANS OWASP
15 Improper Control of Generation of Code CWE 94 1
10 Execute Code CWE 78 6
5 Session Hijacking CWE 384 3

Figure 4.17: High-Rated True Positive Defects Detected by RATS Sorted by Category and Mapped
to CWE, SANS Top 25, and OWASP Top 10. All High-rated True Positive defects detected by RATS
are classified in three categories: improper control of generation of code, execute code, and session
hijacking.

4.1.5 Perl::Critic
Perl::Critic is an open source tool for the Perl programming language. Because of the lack of
detail in the Perl::Critic defect report, the research team was not able to translate the Perl::Critic
findings to either defect categories similar to the other static analysis tools nor to the CWEs,
OWASP, or SANS taxonomy.

This tool was used against the source code for one internet voting vendor and its rating scale is:
High, Medium, and Low.

Of the 1,607 defects found by Perl::Critic, 680 were rated as High and 927 as Medium, as
illustrated in Figure 4.18.

30
100%

FP TP

34

Figure 4.18: Defects Detected by Perl::Critic by Severity Rating. 42.3% of the defects detected by
Perl::Critic were rated High.

All of the 680 High-rated defects detected by Perl::Critic were adjudicated to be True Positives.
Again, this high rate of True Positives should not be taken as a reflection on the quality of the
tool, but is likely a result of the vendor assessment effort. (Refer to section 3.3 Assessment and
Adjudication of True/False Positives.)

Figure 4.19: RATS False Positive Adjudication Results. 100% of defects identified by Perl::Critic
were adjudicated as True Positives.

4.2 Dynamic Test Results
The results of the dynamic scanners used in the testing are shown in Figure 4.20. The
WebInspect tool tested the internet voting system vendors’ source code in operation, and App
Detective tested the associated database.

As previously noted, assessing a defect produced by dynamic scanning as a False Positive
requires a high level of expertise of the code. For this reason, and because the primary focus of

927
 (58%)

680
(42%)

Low Med High

680
(100%)

FP TP

35

this effort was on static analysis tools, the test results were provided to each vendor but no
adjudication of the results was performed.

Severity WebInspect App Detective
Low 103 13
Medium 41 21
High 4 40
Total 148 74

Figure 4.20: Dynamic Testing Results. HP WebInspect found four defects classified as High risk, and
AppDetective found 40 High-risk defects.

An important note regarding the dynamic test findings: the test environment does not reflect any
additional security protocols used by the vendors in the hosting/production environment which
may, or may not, neutralize or mitigate any of the defects found in CALIBRE’s testing.

4.2.1 WebInspect Test Results
Across all the voting system vendors, four defects (3%) identified by WebInspect were rated as
High, as illustrated in Figure 4.21.

Figure 4.21: Dynamic Testing Results. More than two thirds of all defects detected by WebInspect were
rated Low with only 3% rated High.

Figure 4.22 shows the identified defect categories, number of instances and a mapping to CWEs,
SANS Top 25, and OWASP Top 10.

69%

28%

3%

Low Medium High

36

Instances Defect Category CWE # SANS OWASP
2 Cross-Frame Scripting 352 12 8
1 Web Server Cross-Site Scripting 79, 80, 116, 811 4 3
1 Session Fixation 384 2

Figure 4.22: High-Rated True Positive Defects Detected by WebInspect Sorted by Category and
Mapped to CWE, SANS Top 25, and OWASP Top 10. All High-rated True Positive defects detected
by WebInspect are classified in three categories, cross-frame scripting, web server cross-site scripting,
and session fixation.

4.2.2 App Detective Test Results
54% of the defects identified by App Detective were rated as High, as illustrated in Figure 4.23.

Figure 4.23: AppDet Testing Results. 54% of all defects detected by App Detective were rated High.

Figure 4.24 lists the defect categories found by AppDet.

Defect Categories
Easily guessed root/account password
Blank root/account passwords
Password for user same as username
Latest release not installed
Anonymous user exists
Permissions on user table
MySQL Authentication bypass vulnerability
Critical Patch Update Missing

Figure 4.24: High-Rated Defect Categories Identified by AppDet.

As the AppDet defects relate to database issues, it is not possible to map these weaknesses to
CWEs.

18%

28%

54%

Low Medium High

37

4.3 Analysis of Results
As the results in section 4.1 illustrate, the five static analysis tools showed great variability in
detecting defects. One difficulty in reporting test results for the tools in the aggregate, across all
vendors, is that not all the tools were used against all the vendors. Thus the numbers presented
do not truly constitute an “apples-to-apples” comparison. Nonetheless, meaningful statements
about the tools that can be made:

HP Fortify, which was used against all three vendors’ source code, consistently found more
defects, and more High-rated defects, than the other tools used against the same vendor’s code.
The only tool that found more potential weaknesses was Perl::Critic, a tool primarily used to test
Perl coding best practices; however, the usefulness of the Perl::Critic is limited based on the
detail, or lack of detail, provided in the Perl::Critic reports.

This finding is consistent with the fact that HP Fortify has a larger library of defects it tests
against than the other tools. Based on the testing and analysis conducted for this report, if only
one static analysis tool could be chosen, from the tools in the toolbox utilized, it would be HP
Fortify.

An objective of this effort was to determine the usefulness of using multiple static SA tools on
the same vendor software. In the aggregate (and starting with HP Fortify as the first tool used),
as additional tools were utilized, more defects were found. This finding is consistent with the
NSA CAS report. However, if only defects rated High were considered, the additional tools did
not identify additional defects. The defects assessed as True Positives found by Coverity, SQL
Injection (CWE 89), and VCG, Resource Leak (CWE 404), were also identified by HP Fortify.

The research team attempted to determine whether the defects found by the two tools, HP Fortify
and Coverity, and HP Fortify and VCG, were identifying the same piece of suspect code
(defects) in their scans. The team conducted extensive analysis on the test results as reported by
the different tools. However, the team was not able to correlate defects identified by HP Fortify
with either the Coverity- or VCG-identified defects due to the different levels of detail supplied
by the tools’ reports.

As previously stated, vendors’ adjudication approaches differed drastically, resulting in the
distortions of the three tools’ True/False Positives rates. No conclusions about the tools True
Positive/False Positive rate should be drawn from the data reported herein.

38

5 Pro V&V Validation Results
Pro V&V successfully utilized the Installation and User Manuals created by CALIBRE to install
all SA tools and conduct the testing of the voting system vendors’ code. Pro V&V replicated the
CALIBRE testing results, and concurred with CALIBRE’s adjudication of the False Positive
analysis, thus verifying the validity of CALIBRE’s methodology and protocols used.

Pro V&V utilized the documentation created by CALIBRE to install and configure each SA tool
for use against the voting system vendors’ software without incident. They then performed the
testing according to the documentation developed by CALIBRE and replicated the test results
found by CALIBRE. In one instance, using the WebInspect tool, Pro V&V’s results differed
from those of the CALIBRE testing. Investigation revealed that the version of WebInspect
differed from the version used by Pro V&V (CALIBRE had conducted its testing several months
prior to Pro V&V and an update to the software had occurred in the interim). CALIBRE
received an updated version of the software and re-ran the test, producing results that matched
those of Pro V&V.

Pro V&V also conducted a True Positive/False Positive review of the assessments submitted by
the vendors. In all cases that the vendor assessed a defect, Pro V&V concurred with the vendor
finding. For the vendor that performed a random sampling of the defects in their assessment
process, Pro V&V reviewed additional defects that found additional False Positives.

Pro V&V’s complete report is found in Appendix B.

39

6 Conclusions and Recommendations
The results presented in this report document that existing software assurance tools provide a
viable means of identifying potential security and coding best practices weaknesses of existing
internet voting system vendors’ software. This report documents a successful, and verified,
methodology for conducting SA tool testing of voting system vendor software. The report also
identifies challenges encountered and identifies resolutions that led to successful testing.

This report examined the effectiveness of a tailored suite of software assurance tools, both static
and dynamic, against the code of three EAC-registered internet voting systems, and the ability to
optimize the tools in order to reduce the number of False Positives detected during the scans.
While this effort was not intended to assess, nor draw any opinions or conclusions on the
security posture of the voting systems, all vendors were identified to possess defects in their
code. This report describes:

• The project’s background, including the development, and subsequent modification of the
toolbox of analysis tools;

• The protocol and methodology used to test the vendor software by the analysis tools and
a discussion of tool optimization;

• The results of the testing conducted against the three vendor’s source code by tool and an
analysis of the results; and

• The validation of the protocol, methodology, and results by Pro V&V.

The following are conclusions based on the testing effort and the analysis of the test results for
this project:

• If commercial (non-open source) tools are being utilized (e.g., Parasoft), it is imperative
to understand the programming language(s) and other technical details utilized by the
voting system vendors prior to tool acquisition.

• Using multiple static code analysis tools increased the number of potential defects
identified in the source code for all severity ratings (High, Medium, and Low).

• However, if one considers the use of HP Fortify as the primary static analysis tool, the
additional tools utilized for this analysis did not increase the number of True Positive
High severity defects identified.

• For the C# and Java coding languages, HP Fortify identified the vast majority of potential
defects. The open source tools used were of marginal value.

• Of the tools that were utilized for this analysis, the commercial source tools (HP Fortify
and Coverity) provided varying levels of customization/optimization that the open source
tools often did not.

• Customizing static analysis tools to reduce/eliminate False Positives can be done in the
development phase of coding (in the IDE); however when the tools are used for the
current type of analysis, post development, all defects must be examined to determine a
True/False Positive finding.

40

In the broader scope, this project provides FVAP with a methodology to assess the software
assurance posture of potential vendors for future FVAP pilot/demonstration projects, and
identifies several useful SA tools for such an assessment. This project can serve as a prototype
for the EAC to integrate automated SA tools into the EAC certification process and highlights,
for voting system vendors, the need for SA tool integration into their development process.
Additionally, this project can serve as a building block for NIST as they continue assurance tool
testing in the voting environment and act as a first step in developing a library of defects (CWEs)
specifically affecting voting systems.

Going forward, the following are recommendations for either additional research with regard to
the use of software assurance tools, other areas of research and analysis that may be useful
regarding testing tools, and/or additional security analysis of voting system vendors:

• Investigate the use of two or more robust static analysis tools (e.g., HP Fortify and
Parasoft) in True/False Positive identification; using two or more tools with similar defect
coverage could help with the False Positive adjudication by rapidly identifying defects
found by multiple tools.

• Examine the use of multiple open source tools to provide the same level of analysis as a
single commercial tool.

• Research that defines the criteria that SA tools use to map their findings to the CWEs.
• Conduct analysis on the defects found by SA tools compared to a list of potentially

applicable CWEs, to include:
o Identifying CWEs found by SA tools
o Identify non-CWE enumerated defects and the associated criteria
o Development of definitions that tool manufacturers can use to enhance their rules

for mapping to the CWEs
o Identify CWEs that need to be refined to facilitate the mapping process
o Recommended changes to the CWEs to facilitate a higher percent of the tool

findings mapping to the CWEs
• Conduct analysis of additional SA tools on vendor code, identifying critical and high

defects found for each tool.
• Creation of knowledge base of typical defects that would cover:

o How to manually test a defect
o What makes the defect a True or False Positive (i.e., what to look for)

• Perform an attack analysis on each vendor site to provide more details on how a potential
attacker may try to access the system.

• Compare and contrast dynamic scanners on operational systems with known defects and
scan with dynamic toolkit.

• Conduct a cost/benefit analysis of the use of automated tools versus manual code review
in the testing and certification process.

41

• Analyze incorporating the requirement for a toolkit of assurance tools as part of the
voting system testing and certification process in lieu of a complete line-by-line review of
code.

• Conduct analysis on the potential impact of identified defects in vendor code on voting
systems and related voting results.

• Develop an overall, comprehensive toolkit balanced with commercial and open source
static and dynamic tools that can meet a wide variety of operational environments and
software coding languages.

• Examine strategies to make the aforementioned toolkit a cost-effective package that
could be used by voting system vendors, as a part of the standards NIST certifies and the
EAC incorporates into its internet voting standards, to provide election officials and
voters a greater level of confidence.

While existing SA tools provide a viable means of identifying potential security and coding best
practice weaknesses of existing internet voting system vendor’s software, the development of a
cost effective suite of tools for use by multiple constituencies, from software developers to
testing laboratories, holds the potential for delivering voting systems that have been designed
from the ground up, and verified through testing, to be safe and secure.

42

Appendix A: Vendor Questionnaire

Questions regarding your voting system:

• Which operating system do you use? (e.g., Windows 2008 R2, Linux)

• What language(s) is your source code in? (e.g., Java, C#, C\C++)

• Which integrated development environment do you use? (e.g., Visual Studio, Eclipse)

• Does your system use any third party compilers? (e.g., Maven, Apache Ant)

• Do you currently use any static/dynamic code analyzers outside the CALIBRE’s suite of
tools? (e.g., Redgate ANTS, Checkmarx)

• Which web server/servlet do you use? (e.g., Apache Tomcat)

The following items are necessary to adequately test the voting system:
Description Point of

Contact
Date

Received

Replica of your development system with any IDEs and third party
compilers

Replica of your operational system with database and an account
with admin privileges

Documentation for both the setup and compilation of your source
code

A user's guide on how to navigate your website

Documentation on database (e.g. account credentials)

A list of voters with credentials to use with your voting application

Additional Comments:

43

Appendix B: Pro V&V Report

PRO V&V

TEST REPORT

FOR

PERFORMING VERIFICATION AND VALIDATION

ON THE

OPTIMIZATION OF SOFTWARE ASSURANCE TOOLS

May 12, 2014

Pro V&V, Inc.
700 Boulevard South, Suite 102

Huntsville, AL 35803
256-713-1111

44

TABLE OF CONTENTS

1.0 INTRODUCTION .. 1
1.1 Pro V&V ... 1
1.2 Background ... 1

1.3 Scope... 2
1.4 References... 2
1.5 Terms and Abbreviations .. 2
1.6 Testing Responsibilities .. 3

1.7 Quality Assurance ... 3
2.0 MATERIALS REQUIRED FOR TESTING ... 3

2.1 Software .. 3
2.2 Equipment ... 4
2.3 Optimization Documentation .. 5

3.0 TEST SPECIFICATIONS .. 6
3.1 Static Code Analyzer .. 6
3.2 Dynamic Analysis Tools ... 6

3.3 Test Environment Architecture ... 6
4.0 TEST DATA... 8

4.1 Test Data Recording ... 8
4.2 Test Data Criteria and Reduction.. 8

5.0 TEST PROCEDURE AND CONDITIONS ... 8
5.1 Facility Requirements ... 8
5.2 Test Setup.. 8
5.3 Test Sequence ... 9

6.0 Results ... 9
6.1 Static Code Analyzer .. 9
6.2 Dynamic Analysis Tools ... 10
6.3 False Positive Analysis ... 11

45

1.0 INTRODUCTION

This document presents the test processes and procedures followed by Pro V&V, Inc., (hereafter
referred to as Pro V&V) when performing verification and validation on the optimization of
software assurance tools. Pro V&V performed this effort with the intent of providing a third
party independent opinion for the optimization and documentation created and performed by
CALIBRE for each of the submitted internet voting software applications. Pro V&V carried out
all activities performed as part of this test engagement in such a way as to meet the requirements
of National Institute of Standards and Technology (NIST) handbooks 150-2006 and 150:22-2008
and to satisfy the needs of CALIBRE, the regulatory authorities, or organizations providing
recognition.

1.1 Pro V&V

Pro V&V is accredited as a National Voluntary Laboratory Accreditation Program (NVLAP)
testing laboratory by the National Institute of Standards and Technology (NIST). This NVLAP
accreditation incorporates the requirements of ISO/IEC 17025 and incorporates testing to the
Voting System Standards (VSS), including the Help America Vote Act (HAVA) requirements
and the Voluntary Voting Systems Guidelines (VVSG), for core test methods involving: Voting
System Testing, Technical Data Package review, Physical Configuration Audit, Source Code
Review, Witnessed Build and System Installation Testing, Functional Configuration Audit,
System Integration testing, and Telecommunication and Security testing.

Additionally, Pro V&V has been audited by the Election Assistance Commission (EAC) and
successfully met all requirements for the EAC Voting System Test Laboratory (VSTL)
accreditation.

1.2 Background

Software assurance (SA) is generally defined as the level of confidence that software is free from
vulnerabilities, weaknesses, or flaws and that the deployed software functions as intended. The
Federal Voting Assistance Program (FVAP) commissioned CALIBRE to optimize a software
assurance toolkit for each of the registered internet voting manufacturers. CALIBRE selected
several tools that are approved by the Defense Information Systems Agency (DISA) and the
National Information Assurance Partnership (NIAP).

During the software assurance research project, CALIBRE recommended three static code
analyzers that were identified in the National Security Agency’s Center for Assured Software
report issued in December 2011 (NIST SAMATE (Software Assurance Metrics and Tool
Evaluation: Static Analysis Tool Study Methodology)). This report stated that that the use of up
to three different static source code analysis tools may provide up to a 61% true positive rate. The
goal of the CALIBRE optimization project was to meet or exceed this rate.

SA tools can be automated, semi-automated, or manual software tools which test for flaws within
the software coding environment. SA tools can be categorized and evaluated based on their
analysis, methodology, and purpose. Previous research determined that a software assurance
toolkit customized to each voting system manufacturer could possibly decrease software
vulnerabilities by identifying critical vulnerabilities.

Pro V&V, Inc.
Test Report Date 5/12/2014

Page 1 of 11

The table below presents a list of the static source code analysis tools, dynamic web application
scanner, and dynamic database scanner that were selected as part of the software assurance tool
kit.

Table I: Software Assurance Toolkit

Dynamic Software
Assurance Tools

Static Software Assurance Tools

Database
Scanner

Web
Application

Scanner

Source Code Security Analyzer

App
Detective

HP
WebInspect

RATS Perl
Critic

HP
Fortify

Coverity VisualCode
Grepper

1.3 Scope

The “Target of Evaluation” (TOE) for the test engagement was the optimization performed by
CALIBRE for each of the SA tools by manufacturer and the documentation used to perform the
optimization. Pro V&V performed verification on the documentation provided. Pro V&V also
provided verification that the false positives reported by the EAC registered internet voting
manufacturers were false positives.

This test engagement included source code in a development environment and the software
application in an operating environment for the three EAC registered internet voting systems
manufacturers. This test engagement also included a selected toolkit for each of the EAC
registered internet voting systems manufacturers.

The tools recommended by CALIBRE include all needed scanning tools to allow the use of three
different static analysis tools. The documented tools in Table I were researched and selected
based on a research project performed by CALIBRE. According to the technical information
provided by the three EAC registered internet voting systems manufacturers, these tools were
selected because of languages used, system architectures and third party software.

1.4 References

• National Institute of Standards and Technology (NIST) Handbook 150, 2006 Edition,

National Voluntary Laboratory Accreditation Program procedures and General
Requirements

• NIST Handbook 150-22, 2008 Edition, National Voluntary Laboratory Accreditation

Program (NVLAP) Voting Systems Testing

1.5 Terms and Abbreviations

CM – Configuration Management

COTS – Commercial off-the-Shelf Software/Hardware

Pro V&V, Inc.
Test Report Date 5/12/2014

Page 2 of 11

DISA – Defense Information Systems Agency

EAC – Election Assistance Commission

FVAP – Federal Voting Assistance Program

NIAP – National Information Assurance Partnership

NIST – National Institute of Standards and Technology

NVLAP – National Volunteer Laboratory Accreditation Program

SA – Software Assurance

SAMATE – Software Assurance Metrics and Tool Evaluation

VLAN – Virtual Local Area Network

VM – Virtual Machine

VSTL – Voting Systems Test Laboratory

1.6 Testing Responsibilities

All testing was conducted under the guidance of Pro V&V by personnel verified by Pro V&V to
be qualified to perform the testing. No other personnel or subcontractors were used in this test
engagement.

1.7 Quality Assurance

Pro V&V assumed full responsibility for quality control throughout the test engagement. The
Quality Assurance Manager was responsible for employing quality control methods in order to
provide effective, high quality services that achieved or exceeded the acceptable quality level
performance standards set by the NVLAP. To accomplish this, Pro V&V has developed a
Quality Management System (QMS) that meets the guidelines for NIST and EAC accreditation.

2.0 MATERIALS REQUIRED FOR TESTING

This section contains the detailed descriptions of items utilized during this test engagement
including all software, hardware, peripherals, both proprietary and COTS, and any test support
equipment or materials necessary for test performance.

This test engagement was conducted remotely using virtual operating environments. The virtual
operating environment was documented to include both logical environment and the physical
environment.

2.1 Software

The virtual environment was explicitly documented before test execution to detail the virtual
hardware and software for each environment. This documentation included the logical PC,
laptop, or server and also defined the manufacturer, processor, memory, hard drive capacity,
operating system, and any COTS supporting applications such as Microsoft Office or Adobe
Acrobat Reader.

Pro V&V, Inc.
Test Report Date 5/12/2014

Page 3 of 11

For each internet voting system, both a development environment and an operational environment
was required. Before test execution, a detailed inventory of all software required to support the
test engagement was documented. This included versions, and other identifying components.
The software components used during testing are detailed in Table 2.1, below:

Table 2.1 Software

Component Name Version Description
Real VNC Viewer 4.1.3 Linux virtual viewer
DigitalVolanco
Hash Tool

1.1.0.0 Digital signature tool

Oracle VM
VirtualBox
Manager

4.3.10r93012 Virtual machine software

In addition to the software components for test execution, the software assurance toolkits were
documented in a manner as to ensure the traceability and reproducibility of the test execution.
Before test execution, a detailed inventory of all SA tools was documented. The SA toolkits
tested are detailed in Table 2.2, below:

Table 2.2 Software Assurance Toolkits

Tool Name Version
HP Fortify Audit Workbench 3.80.0060
HP Fortify SCA 5.15.0.0060
Coverity 6.6.1
VisualCodeGrepper 1.5.1.1
HP RATS (Rough Audit Tool 2.3
Perl::Critic 1.121
HP WebInspect 10.1.177.0
AppDetectivePro 8.2

2.2 Equipment

The physical hardware that hosts the virtual environments was documented before test execution.
This documentation included manufacturer, processor, memory, hard drive capacity, operating
system, and any COTS supporting applications such as Microsoft Office or Adobe Acrobat
Reader.

The details of the VM Host Physical Server/Server Array hardware are listed below:

Table 2.3 VM Host Physical Server/Server Array Hardware

Make Various
Model Various

Pro V&V, Inc.
Test Report Date 5/12/2014

Page 4 of 11

Processor Intel Xeon®
Memory 192 GB
Operating System VMWare ESXi 5
Software and Version VMWare ESXi 5

The details of the VM Client Machine hardware are listed below:

Table 2.4 VM Client Machine Hardware

Computer Name CALFVAPSCAN2.calibresys.com
Domain calibresys.com
IP Address 10.200.200.9

Services SNMP, SNMP WMI Provider, Telnet
Client

Processor Intel Xeon® X560 @ 2.67GHz
Memory 8.00 GB
Storage 300GB

Operating System

Windows Server 2008 R2 Datacenter
(64-bit product ID55041-242-
0667907-84014)

Software and Version VMware Tools for Windows Version
9.0.5 build-1065307

Computer Name CALFVAPSCAN3.calibresys.com
Domain calibresys.com
IP Address 10.200.200.10

Services SNMP, SNMP WMI Provider, Telnet
Client

Processor Intel Xeon® X560 @ 2.67GHz
Memory 8.00 GB
Storage 300GB

Operating System

Windows Server 2008 R2 Datacenter
(64-bit product ID55041-242-
0667907-84014)

Software and Version VMware Tools for Windows Version
9.0.5 build-1065307

2.3 Optimization Documentation

CALIBRE provided documentation in the form of an installation guide and users guide for each
of the three registered EAC internet voting manufacturers. Pro V&V has the specific name and
revision numbers on file. Because the document specific name will identify the voting systems
manufacturer they will not be released with this report.

Pro V&V, Inc.
Test Report Date 5/12/2014

Page 5 of 11

3.0 TEST SPECIFICATIONS

3.1 Static Code Analyzer

For the static code analyzers, an installation for each software assurance tool was performed.
Once each tool was in a known default state, the build environment was created by installing all
compilers, supporting software and source code for a manufacturer. After the creation of the
build environment, a scan was performed using each of the selected tools. This scan was
considered the baseline scan for each tool.

An analysis was then performed comparing the baseline scan reported by CALIBRE and the
baseline scan performed by Pro V&V. In all scans the findings were able to be reproduced.
CALIBRE submitted finding of false positives for each tool per manufacturer. These findings
were then analyzed by Pro V&V for correctness. The analysis for two of the manufacturers did
not contain enough detail to make a determination on the degree to which the tools reported false
positives. For these two manufacturers Pro V&V performed an analysis of the source code
against selected findings and determined that a more detailed analysis would have to be
performed to create a statistical measurement.

3.2 Dynamic Analysis Tools

For dynamic analysis tools, each scanner was installed on a single virtual machine. The virtual
machine had access to the operating environment provided by the EAC internet voting systems
manufacturer in order to perform the scan remotely. From this virtual machine, a scan was
performed of the internet voting system that was considered the baseline scan.

An analysis was then performed comparing the baseline scan reported by CALIBRE and the
baseline scan performed by Pro V&V. The results of these two scans were not able to be
reproduced for the web application scanner. It was determined that the scanner had been updated
in the time period between scans. CALIBRE updated WebInspect and performed another scan
and the results were reproduced.

3.3 Test Environment Architecture

The test environment architecture used for this test engagement consisted of four separate virtual
machines. A build machine for each manufacture and an operational scanning machine that can
be pointed to each operational environment submitted by each manufacturer were required. The
diagram below provides the architectural overview of this configuration.

Pro V&V, Inc.
Test Report Date 5/12/2014

Page 6 of 11

Static

Dynamic '

System 1 Build Workstation System 2 Build Workstation System 3 Build Workstation

B B B

System 1 Static Scanner System 2 Static Scanner System 3 Static Scanner

System 1 Operational App System 2 Operational App System 3 Operational App

Dynamic Scanner

Figure 1: Test Environment Diagram

Pro V&V, Inc.
Test Report Date 5/12/2014

Page 7 of 11

4.0 TEST DATA

4.1 Test Data Recording

All test data produced during this project is the property of CALIBRE. The output test data from
the software assurance tool scanners was collected and stored in an appropriate manner as to
allow for data analysis.

4.2 Test Data Criteria and Reduction

All test results were evaluated against the expected results set forth in the test cases. For static
code analyzers, the comparative analysis investigated the data output differences to ensure the
optimization removed false positives and did not alter the ability of the SA tools to identify true
negatives.

5.0 TEST PROCEDURE AND CONDITIONS

5.1 Facility Requirements

The test engagement was performed remotely utilizing virtualized hardware resources. The
physical hardware was located at the CALIBRE facility in Alexandria, Virginia. During the test
engagement, control of the test items and the test environment was maintained at all times.

5.2 Test Setup

A baseline configuration was established for the virtual environment for both the development
environment and the operational environment. The creation of the baseline environment
performed by CALIBRE was documented. Each baseline configuration included a virtual
machine, the operating system, supporting software applications and the SA tools for that
environment. For the development environment, all static code analyzers were installed in an
out-of-the-box default configuration. For the operational environment, all dynamic scanners were
also installed in an out-of-the-box default configuration.

The baseline configurations for each of the three EAC registered internet voting systems were
used. The virtual environments were hosted on the hardware documented in Section 2 Materials
Required for Testing of this Test Report. Once the developmental baseline configuration was
successfully hosted, source code and build environment were installed on the development
baseline configuration. The operational environment was then used to examine the operational
application using the dynamic scanners.

For test setup, the physical hardware used to host the virtual environments was configured. This
hardware consisted of the VM Host Physical Server/Server Array identified in Section 2
Equipment of this Test Report. The logical test environment was then established through a
VLAN containing a set of virtual machines. The VLAN was used for hosting voting systems,
development environments, and source code scanners.

There are thirteen boxes on the VLAN that are identified as follows:

Pro V&V, Inc.
Test Report Date 5/12/2014

Page 8 of 11

Table 5.1 VLAN Box Identification

Box Identification
10.200.200.1 NA
10.200.200.2 NA
10.200.200.3 NA
10.200.200.5 CALFVAPSCAN1
10.200.200.6 Manufacturer Development
10.200.200.7 Manufacturer Operational
10.200.200.8 Manufacturer Development
10.200.200.9 CALFVAPSCAN2
10.200.200.10 CALFVAPSCAN3
10.200.200.11 Manufacturer Operational
10.200.200.12 Manufacturer Operational
10.200.200.13 NA

10.200.200.14 Pro V&V’s Manufacturer
Development

5.3 Test Sequence

Scanning of systems occurred in two phases. During Phase 1, the static code analyzer toolkits
were used to perform all scanners. After the baseline was established in Phase 1, Phase 2 was
accomplished by performing scans using dynamic toolkits.

CALIBRE identified distinct steps for each of the test phases. These steps are presented in the
documentation provided to Pro V&V by CALIBRE. The steps to install and configure each tool
per EAC registered manufacturer were provided.

Verification and validation was performed, on each document. The purpose of the verification
and validation was to provide a third party independent opinion for the optimization of SA tools
performed by CALIBRE. This engagement included COTS software assurance tools, custom
configurations of the SA tools per internet voting system manufacturer, and documentation
created by CALIBRE for each custom configuration. The target of evaluation for engagement
was not the source code for internet voting, but the optimization and documentation created and
performed by CALIBRE.

6.0 RESULTS

6.1 Static Code Analyzer

HP Fortify SCA/Audit Workbench

The optimization documentation submitted for HP Fortify Audit Workbench by CALIBRE
consisted of an installation guide and user’s guide to be utilized by users possessing limited
technical expertise to install and use the submitted product. This documentation was evaluated
and was determined to be sufficient to meet the requirements. After Pro V&V installed HP
Fortify Audit Workbench according to the installation guide and performed scans per the

Pro V&V, Inc.
Test Report Date 5/12/2014

Page 9 of 11

submitted user’s guide, any discrepancies noted in the evaluation were reported to CALIBRE and
were successfully remediated prior to the end of the test campaign.

Coverity

The optimization documentation submitted for Coverity by CALIBRE consisted of an installation
guide and user’s guide to be utilized by users possessing limited technical expertise to install and
use the submitted product. This documentation was evaluated and was determined to be
sufficient to meet the requirements. After Pro V&V installed Coverity according to the
installation guide and performed scans per the submitted user’s guide, any discrepancies noted in
the evaluation were reported to CALIBRE and were successfully remediated prior to the end of
the test campaign.

VisualCodeGrepper (VCG)

The optimization documentation submitted for VCG by CALIBRE consisted of an installation
guide and user’s guide to be utilized by users possessing limited technical expertise to install and
use the submitted product. This documentation was evaluated and was determined to be sufficient
to meet the requirements. After Pro V&V installed VCG according to the installation guide and
performed scans per the submitted user’s guide, any discrepancies noted in the evaluation were
reported to CALIBRE and were successfully remediated prior to the end of the test campaign.

RATS

The optimization documentation submitted for RATS by CALIBRE consisted of an installation
guide and user’s guide to be utilized by users possessing limited technical expertise to install and
use the submitted product. This documentation was evaluated and was determined to be sufficient
to meet the requirements. After Pro V&V installed RATS according to the installation guide and
performed scans per the submitted user’s guide, any discrepancies noted in the evaluation were
reported to CALIBRE and were successfully remediated prior to the end of the test campaign.

Perl::Critic

The optimization documentation submitted for Perl::Critic by CALIBRE consisted of
an installation guide and user’s guide to be utilized by users possessing limited technical expertise
to install and use the submitted product. This documentation was evaluated and was determined
to be sufficient to meet the requirements. After Pro V&V installed Perl::Critic according to the
installation guide and performed scans per the submitted user’s guide, any discrepancies noted in
the evaluation were reported to CALIBRE and were successfully remediated prior to the end of
the test campaign.

6.2 Dynamic Analysis Tools

HP WebInspect

Pro V&V, Inc.
Test Report Date 5/12/2014

Page 10 of 11

Federal Voting Assistance Program CALIBRE
Software Assurance Final Report 15 April 2014

The optimization documentation submitted for WebInspect by CALIBRE consisted of an
installation guide and user’s guide to be utilized by users possessing limited technical
expertise to install and use the submitted product. This documentation was evaluated and
was determined to be sufficient to meet the requirements. After Pro V&V installed
WebInspect according to the installation guide and performed scans per the submitted user’s
guide, any discrepancies noted in the evaluation were reported to CALIBRE and were
successfully remediated prior to the end of the test campaign.

AppDetectivePro

The optimization documentation submitted for AppDetectivePro by CALIBRE consisted of
an installation guide and user’s guide to be utilized by users possessing limited technical
expertise to install and use the submitted product. This documentation was evaluated and
was determined to be sufficient to meet the requirements. Pro V&V could not install
AppDetectivePro in the test environment. Pro V&V worked with technical support from
the manufacturer and network engineers from CALIBRE for 2 months to try and resolve
this issue. It was determined that a policy would not allow AppDectiveScan service to
run. This caused the server to crash with a Kernel Power failure message. The duration
of this project did not allow for the discrepancy to be resolved. Pro V&V verified that
installation guide and reviewed the user’s guide, but because this discrepancy could not be
resolved the result obtained by the scanner could not be verified.

6.3 False Positive Analysis

CALIBRE submitted the results from the EAC registered internet voting systems
manufacturers’ analysis for false positives. Pro V&V performed an analysis of these results.
The analysis performed by each manufacturer was to varying levels. One manufacturer
performed a detailed analysis. For this manufacturer, Pro V&V verified each item
identified by the manufacturer as and false positive. Pro V&V concurred on every item.
Another manufacturer performed a sample analysis selected a few items for a given
category. For this manufacturer, Pro V&V verified each item identified by the manufacturer
as false positives and selected additional items. Pro V&V concurred on every item, but was
able to identify more false positives than the manufacturer identified. The last manufacturer
performed a very high level analysis. Because the results report were at such a high level
Pro V&V could not definitively determine whether the findings were true or false positives.

Pro V&V, Inc.
Test Report

Page 11 of 11

5/12/2014 Date

	Executive Summary
	1 Introduction
	1.1 Software Assurance
	1.2 Purpose of this Report
	1.3 Organization of this Report

	2 Project Background
	2.1 Software Assurance Tools
	2.1.1 Static and Dynamic SA Tools
	2.1.2 False Positives
	2.1.3 Combining Multiple Tools
	2.1.4 Previous Toolbox Development

	2.2 Risks and Defects
	2.2.1 Catalogs of Software Defects
	2.2.2 Defect Risk Ratings

	3 Testing Protocol/Methodology
	3.1 Set-Up
	3.1.1 Installation of Voting Systems
	3.1.2 SA Tool Installation

	3.2 Test Plan and Scanning
	3.3 Assessment and Adjudication of True/False Positives
	3.4 Tool Optimization
	3.5 Installation and User Manuals
	3.6 Pro V&V Validation

	4 CALIBRE Results
	4.1 Static Analysis Tool Results
	4.1.1 HP Fortify Source Code Analyzer
	4.1.2 Coverity
	4.1.3 VisualCodeGrepper – VCG
	4.1.4 RATS - Rough Auditing Tool for Security
	4.1.5 Perl::Critic

	4.2 Dynamic Test Results
	4.2.1 WebInspect Test Results
	4.2.2 App Detective Test Results

	4.3 Analysis of Results

	5 Pro V&V Validation Results
	6 Conclusions and Recommendations

